

Using Experimental Design and Statistical Software to Investigate the Impact of Amines on Metalworking Fluid Lubricity

Jason Pandolfo 19JUN2019

- » Global Headquarters: Conshohocken, PA
- » Supplier of industrial process fluids since 1918
- » 2,160 associates worldwide
- » 26 locations in 21 countries
- » 2018 sales: \$867.5m
- » 2018 R&D expenditures: \$24.5m

Metalworking Fluids

- » Oil emulsified in water
- » Cools and lubricates tool and part
- » Extends tool life
- » Removes chips and debris
- » Prevents rust and corrosion

http://www.fabricatingandmetalworking.com/2015/06/a-new-wave-of-metalworking-fluids/

Metalworking Fluids

MWF Composition

- » Carrier oil: 20-50%
- » Lubricity additives: 5-15%
- » Surfactants:
 - Fatty acids: 5-15%
 - Emulsifiers: 5-15%
- » Amines: 5-15%
- » Corrosion inhibitors: 1-5%
- » Biocides: 0.5-5%

Amines

- » Weak bases
- » React with fatty acids and other acid species
- » Maintain pH at ~9.2–9.5
- » Help to prevent biological growth in emulsions
- » Aid in corrosion resistance
- » Provide lubricity

- » "Product A" needed to be modified:
 - Improve pH buffering
 - Reduce raw material cost
 - Maintain overall performance
- » Formulated "Product B"
 - Like-for-like swaps, cost rebalancing
 - Changed the amine package
- » Product B was not the same as Product A:
 - Lubricity was noticeably worse
 - Product A tapping torque: ~160 N-cm
 - Product B tapping torque: ~185 N-cm

Raw Material	Product A	Product B
Carrier Oil	Moderately Expensive	Similar, less expensive
Lubricity Additives	No ch	langes
Fatty Acids	No ch	anges
	6.5% fatty alcohol	4.0% fatty alcohol
Emulsifiers	Expensive ethoxylated emulsifier	Less expensive ethoxylated emulsifier
	_	Additional emulsifier (1.0%)
Amine Package	Needed Improvement	More amine, better performance

Raw Material	Product A	Product B
Carrier Oil	Moderately Expensive	Similar, less expensive
Lubricity Additives	NO CH	ANGES
Fatty Acids	No ch	anges
	6.5% fatty alcohol	4.0% fatty alcohol
Emulsifiers	Expensive ethoxylated emulsifier	Less expensive ethoxylated emulsifier
	_	Additional emulsifier (1.0%)
Amine Package	Needed Improvement	More amine, better performance

Raw Material	Product A	Product B
Carrier Oil	Moderately Expensive Similar, less expension	
Lubricity Additives	No ch	langes
Fatty Acids	No ch	anges
	6.5% fatty alcohol	4.0% fatty alcohol
Emulsifiers	Expensive ethoxylated emulsifier	Less expensive ethoxylated emulsifier
	_	Additional emulsifier (1.0%)
Amine Package	Needed Improvement	More amine, better performance

Raw Material	Product A	Product B
Carrier Oil	Moderately Expensive Similar, less expension	
Lubricity Additives	No ch	langes
Fatty Acids	No ch	anges
	6.5% fatty alcohol	4.0% fatty alcohol
Emulsifiers	Expensive ethoxylated emulsifier	Less expensive ethoxylated emulsifier
	_	Additional emulsifier (1.0%)
Amine Package	Needed Improvement More amine, bet performance	

Raw Material	Product A	Product B
Carrier Oil	Moderately Expensive Similar, less expens	
Lubricity Additives	No ch	langes
Fatty Acids	No ch	langes
	6.5% fatty alcohol	4.0% fatty alcohol
Emulsifiers	Expensive ethoxylated emulsifier	Less expensive ethoxylated emulsifier
	_	Additional emulsifier (1.0%)
Amine Package	Needed Improvement	More amine, better performance

Raw Material	Product A	Product B	
Carrier Oil	Moderately Expensive Similar, less expens		
Lubricity Additives	No ch	langes	
Fatty Acids	No ch	langes	
	6.5% fatty alcohol	4.0% fatty alcohol	
Emulsifiers	Expensive ethoxylated emulsifier	Less expensive ethoxylated emulsifier	
	—	Additional emulsifier (1.0%)	
Amine Package	Needed Improvement	More amine, better performance	

Raw Material	Product A	Product B		
Carrier Oil	Moderately Expensive Similar, less expensive			
Lubricity Additives	No ch	langes		
Fatty Acids	No ch	langes		
	6.5% fatty alcohol	4.0% fatty alcohol		
Emulsifiers	Expensive ethoxylated emulsifier	Less expensive ethoxylated emulsifier		
	—	Additional emulsifier (1.0%)		
Amine Package	Needed Improvement	More amine, better performance		
Total Amine Milli- equivalents	108.8	135.9		

- » An initial investigation was conducted
- » Turned to OFAT experimentation first:
 - Looking for a quick-fix
 - Same amount of fatty alcohol : Product B still worse
- **» Used DOE to investigate:**
 - Rebalancing the emulsifier package : no effect
 - Rebalancing the fatty acid & emulsifiers : no effect
- » We needed to take a different approach!

Re-Examine the Differences

- » Four things to investigate:
 - Difference between carrier oils
 - The amine packages
 - Difference between ethoxylated emulsifiers
 - The additional emulsifier in Product B
- » We set up a factorial experiment to examine the drivers

Factor	Low (Product A)	High (Product B)
Carrier Oil	Expensive	Cheap
Amine Package	Product A	Product B
Ethoxylated Emulsifier	Expensive	Cheap
Additional Emulsifier	0	1.0%

» 16 samples, no replicates, no center points

The MicroTap LabTap II G8:

Instrument Highlights:

- » Torque range: 50-700 N-cm
- » Spindle speed: 300-3000 RPM
- » Max thread depth: 45 mm
- » Variety of aluminum/steel alloys
- » Range of spindles: M2.5-M10
- » Cutting and forming operation
- » Operational and statistical software
- > Quantitative response (N-cm)
- High-precision

Model with ABCD Term Removed:

Response 1: Tapping Torque

Source	Sum of Squares	df	Mean Square	F-value	p-value	
Model	416.22	14	29.73	2.68	0.4492	not significant
A-Carrier Oil	6.25	1	6.25	0.5625	0.5903	
B-Amine Pkg.	330.03	1	330.03	29.70	0.1155	
C-Ethoxylated Surf.	0.4444	1	0.4444	0.0400	0.8743	
D-Add'l Eth. Surf	16.00	1	16.00	1.44	0.4423	
AB	5.44	1	5.44	0.4900	0.6112	
AC	20.25	1	20.25	1.82	0.4059	
AD	4.69	1	4.69	0.4225	0.6331	
BC	0.0278	1	0.0278	0.0025	0.9682	
BD	0.2500	1	0.2500	0.0225	0.9052	
CD	9.00	1	9.00	0.8100	0.5335	
ABC	0.1111	1	0.1111	0.0100	0.9365	
ABD	1.00	1	1.00	0.0900	0.8145	
ACD	14.69	1	14.69	1.32	0.4557	
BCD	8.03	1	8.03	0.7225	0.5515	
Residual	11.11	1	11.11			
Cor Total	427.33	15				

© 2017 Quaker Chemical Corporation. All Rights Reserved

Model with Main & 2-Factor Interactions:

Source	Sum of Squares	df	Mean Square	F-value	p-value		
Model	392.39	10	39.24	5.61	0.0353	significant	
A-Carrier Oil	6.25	1	6.25	0.8943	0.3877		
B-Amine Pkg.	330.03	1	330.03	47.22	0.0010		
C-Ethoxylated Surf.	0.4444	1	0.4444	0.0636	0.8109		
D-Add'l Eth. Surf	16.00	1	16.00	2.29	0.1907		Barely
AB	5.44	1	5.44	0.7790	0.4179		significant
AC	20.25	1	20.25	2.90	0.1495		
AD	4.69	1	4.69	0.6717	0.4497		
BC	0.0278	1	0.0278	0.0040	0.9522		
BD	0.2500	1	0.2500	0.0358	0.8574		
CD	9.00	1	9.00	1.29	0.3079		
Residual	34.94	5	6.99				
Cor Total	427.33	15					

Response 1: Tapping Torque

Factorial Results

Main Effects Model:

Response 1: Tapping Torque

Source	Sum of Squares	df	Mean Square	F-value	p-value	
Model	352.72	4	88.18	13.00	0.0004	significant
A-Carrier Oil	6.25	1	6.25	0.9214	0.3577	
B-Amine Pkg.	330.03	1	330.03	48.66	< 0.0001	
C-Ethoxylated Surf.	0.4444	1	0.4444	0.0655	0.8027	
D-Add'l Eth. Surf	16.00	1	16.00	2.36	0.1528	
Residual	74.61	11	6.78			
Cor Total	427.33	15				

Std. Dev.	2.60	R ²	0.8254
Mean	199.33	Adjusted R ²	0.7619
C.V. %	1.31	Predicted R ²	0.6306
		Adeq Precision	8.7003

- » Amines are affecting machining performance
- » Questions that arose:
 - Which amines are having the strongest effect?
 - Does total amine make a difference?
 - Can we tailor amine packages to desired performance?
- » The best way to answer these questions was with a mixture design

> Investigating 6 amines:

- 3 are in Product B
- 3 are new amines
- > Not investigating the amine package of Product A
- » Formulating to a total of 135.9 amine milli-equivalents
- » Assessing each amine over a different range:
 - Based on usage guidelines
- » Experimental logistics:
 - Optimal design setup with Design-Expert[®] software
 - Augmented simplex lattice
 - Additional lack of fit points for better coverage
 - 2 blocks of 22 samples each
 - Adequate fraction of design space (FDS)

- » Investigating 6 amines:
 - 3 are in Product B
 - 3 are new amines
 - > Not investigating the amine package of Product A

> Formulating to a total of 135.9 amine milli-equivalents

- » Assessing each amine over a different range:
 - Based on usage guidelines
- » Experimental logistics:
 - Optimal design setup with Design-Expert[®] software
 - Augmented simplex lattice
 - Additional lack of fit points for better coverage
 - 2 blocks of 22 samples each
 - Adequate fraction of design space (FDS)

- » Investigating 6 amines:
 - 3 are in Product B
 - 3 are new amines
 - > Not investigating the amine package of Product A
- » Formulating to a total of 135.9 amine milli-equivalents
- > Assessing each amine over a different range:
 - Based on usage guidelines
- » Experimental logistics:
 - Optimal design setup with Design-Expert[®] software
 - Augmented simplex lattice
 - Additional lack of fit points for better coverage
 - 2 blocks of 22 samples each
 - Adequate fraction of design space (FDS)

- » Investigating 6 amines:
 - 3 are in Product B
 - 3 are new amines
 - > Not investigating the amine package of Product A
- » Formulating to a total of 135.9 amine milli-equivalents
- » Assessing each amine over a different range:
 - Based on usage guidelines
- > Experimental logistics:
 - Optimal design setup with Design-Expert[®] software
 - Augmented simplex lattice
 - Additional lack of fit points for better coverage
 - 2 blocks of 22 samples each
 - Adequate fraction of design space (FDS)

- » A mixture-amount technique
- » Allows us to vary the total amount of material
- » Adds one extra component to the experiment
- » Does not contribute active material
 - Adds inert material
 - Reduces the total active material

Dummy %	Active %	Perceived Total %		
0	100	100		
5	95	100		
10	90	100		
	:			

Component	Low	High		
Amine A	0	82.0		
Amine B	0 42.7			
Amine C	0	27.6		
Amine D	15.2	30.5		
Amine E	0	22.5		
Amine F	0	39.7		
Dummy	0 67.95			
Total	135.9 milli-equivalents			

Reduced Special Cubic Model

Source	Sum of Squares	df	Mean Square	F-value	p-value	
Block	37.59	1	37.59			
Model	10795.21	23	469.36	115.90	< 0.0001	significant
⁽¹⁾ Linear Mixture	8825.42	6	1470.90	363.20	< 0.0001	
AB	0.2477	1	0.2477	0.0612	0.8073	
AC	192.90	1	192.90	47.63	< 0.0001	
AD	180.12	1	180.12	44.48	< 0.0001	
AE	4.63	1	4.63	1.14	0.2984	
AF	149.20	1	149.20	36.84	< 0.0001	
AG	121.53	1	121.53	30.01	< 0.0001	
BC	214.16	1	214.16	52.88	< 0.0001	
BD	85.22	1	85.22	21.04	0.0002	
BE	4.16	1	4.16	1.03	0.3234	
BG	85.20	1	85.20	21.04	0.0002	
CD	339.67	1	339.67	83.87	< 0.0001	
CE	35.54	1	35.54	8.78	0.0080	
CF	13.64	1	13.64	3.37	0.0822	
CG	47.29	1	47.29	11.68	0.0029	
DF	18.29	1	18.29	4.52	0.0469	
ABD	125.85	1	125.85	31.08	< 0.0001	
ABE	44.10	1	44.10	10.89	0.0038	
Residual	76.95	19	4.05			
Lack of Fit	57.56	15	3.84	0.7916	0.6725	not significant
Pure Error	19.39	4	4.85			
Cor Total	10909.74	43				

Std. Dev.	2.01	R ²	0.9929
Mean	186.64	Adjusted R ²	0.9844
C.V. %	1.08	Predicted R ²	0.9537
		Adeq Precision	44.9299

Response 1: Tapping Torque

© 2017 Quaker Chemical Corporation. All Rights Reserved

Residuals vs. Predicted

Trace Plot

Actual Components

A: Amine A = 0.0268832 B: Amine B = 0.0180449 C: Amine C = 0.0129664 D: Amine D = 0.0225346 E: Amine E = 0.0106047 F: Amine F = 0.0168672 G: Dummy = 0.027999

Trace Plot

Actual Components

A: Amine A = 0.0268832 B: Amine B = 0.0180449 C: Amine C = 0.0129664 D: Amine D = 0.0225346 E: Amine E = 0.0106047 F: Amine F = 0.0168672 G: Dummy = 0.027999

Optimal formulations, no component constraints:

© 2017 Quaker Chemical Corporation. All Rights Reserved

- » Major takeaways from the investigation:
 - Amines are playing a major role in MWF lubrication
 - The total amount of amine is almost as important as the choice of amines
- » Experimental design was able to determine the source of the performance issue
- » We can use experimental design and Design-Expert[®] to analyze and optimize amine packages
- » This information is being applied to other MWF development projects
- » Experimental design has a place at Quaker!

Thank you!

For questions or comments: Jason Pandolfo pandolfj@quakerchem.com 610-832-7819

© 2017 Quaker Chemical Corporation. All Rights Reserved