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Introduction to the Stat-Ease Handbook for Experimenters 

Design of experiments (DOE) provides an incredibly powerful research tool by which you purposefully 
change input factors to observe their impact on your process or formulation. DOE has been embraced 
by every high-tech industry on the planet—chemical, pharmaceutical, electronics, automotive, etc. 

Traditional scientific methods require that experimenters change only one-factor-at-a-time (OFAT). 
However, OFAT falls far short of multifactor DOE for efficiency in measuring main effects and 
effectiveness for detecting breakthrough interactions. 

We designed this handbook for our software—Design-Expert® (DX) and Stat-Ease® 360 
(SE360) users. Refer to Section 1 before designing your experiment. Section 2 helps you 
analyze your resulting experimental data. Section 3 provides statistical tables for your 
reference (do not worry—as a Stat-Ease software user you will never need them other than to 
check its calculations). 

-The Stat-Ease Consulting Team 
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DOE Process Flowchart 
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Cause-and-effect diagram (to fish for factors) 

 

Suggestions for being creative on identifying potential variables: 
➢ Label the five big fish bones by major causes, for example, Material, Method, Machinery, People 

and Environment (spine). 
➢ Gather a group of subject matter experts, as many as a dozen, and  

o Assign one to be leader, who will be responsible for maintaining a rapid flow of ideas. 
o Another individual should record all the ideas as they are presented. 

❖ Alternative: To be more participative, start by asking everyone to note variables 
on sticky notes that can then be posted on the fishbone diagram. 

Choosing variables to experiment on and what to do with the others: 
➢ For the sake of efficiency, pare the group down to three or so key people who can then critically 

evaluate the collection of variables and chose ones that would be most fruitful to experiment 
on. 

o Idea for prioritizing variables: Give each evaluator 100 units of imaginary currency to 
‘invest’ in their favorites. Tally up the totals from top to bottom. 

➢ Note factors that are hard to change. Consider either blocking them out or including them for 
effects assessment via a split plot design. 

➢ Variables not chosen should be held fixed if possible. 
➢ Keep a log of other variables that cannot be fixed but can be monitored. 

“It is easier to tone down a wild idea than to think up a new one.” 

- Alex Osborne 

Response (Effect): 
______________ 

___________________
_________ 
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Section 1: 

Designing Your Experiment 

 



Rev 1/15/2024 2:32:00 PM 

1-1 

 

DOE Checklist 

 Define objective of the experiment. 

 Identify response variables and how they will be measured. 

 Decide which variables to investigate (brainstorm—see fishbone in Preface). 

 Choose low and high level of each factor (or component if a mixture). 

o Be bold but avoid regions that might be bad or unsafe. 

 Choose a model based on subject matter knowledge. 

 Select design. Specify: 

o Replicates. 

o Blocks (to filter out known source of variation, e.g., day-to-day differences). 

o Center points for characterization factorial or RSM (centroid if a mixture). 

 Evaluate design: 

o Factorials: 

▪ If fractional, check aliasing of main effect and two-factor interactions. 

▪ Assess power—aim for 80% at the least. 

o Response surface method (RSM) and/or mixture: 

▪ Size by fraction of design space (FDS). 

 Go over details of the physical setup and design execution. Be safe! 

 Determine how to hold non-DOE variables constant. 

 Identify uncontrolled variables: Can they be monitored? 

 Negotiate time, material and budgetary constraints. 

o Invest no more than one-quarter of your experimental budget (time and money) in the 
first design. Take a sequential approach. Be flexible! 

 Discuss any other special considerations for this experiment. 

 Make plans for follow-up studies. 

 Perform confirmation runs. 
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Factorial DOE Planning Process 

This four-step process guides you to an appropriate factorial DOE. Based on a projected signal-to-noise 
ratio, you will determine how many runs to budget. 

1. Identify opportunity and define objective. 

2. State objective in terms of measurable responses. 

a. Define the minimum change (y) that is important to detect for each response. This is 
your “signal.” 

b. Estimate experimental error () for each response. This is your “noise.” 

c. Use the signal to noise ratio (y/) to estimate power. 

This information is needed for EACH response. See the next page for an example on how to 
calculate signal to noise and details on power. 

3. Select the input factors to study. (Remember that the factor levels chosen determine the size of 

y.) 

The factor ranges must be large enough to (at a minimum) generate the hoped-for change(s) in 
the response(s). 

4. Select a factorial design (see program Help for details). 

• Are any factors hard-to-change (HTC)? If so, consider a split-plot design. 

• If fractionated and/or blocked, evaluate aliases with the order set to a two-factor 
interaction (2FI) model. 

• Evaluate power (ideally greater than 80%). If the design is a split-plot, consider the trade-off 
in power versus running a completely randomized experiment. 

• Examine the design to ensure all the factor combinations are reasonable and safe (no 
disasters!) 
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Power Requirements for Two-Level Factorials  

Purpose: 

Determine how many runs you need to achieve at least an 80% chance (power) of revealing an active 

effect (signal) of size delta (). 

General Procedure: 

1. Determine the signal delta (). This is the change in the response that you want to detect. 
Bounce numbers off your management and/or clients, starting with a ridiculously low 
improvement in the response and working up from there. What’s the threshold value that 
arouses interest? That’s the minimum signal you need to detect. Just estimate it the best you 
can—try something! 

2. Estimate the standard deviation sigma ()—the noise—from: 

• repeatability studies 

• control charts (R-bar divided by d2) 

• analysis of variance (ANOVA) from a DOE. 

• historical data or experience (just make a guess!). 

3. Set up your design and evaluate its power based on the signal-to-noise ratio (/). If it’s less 
than 80%, consider adding more runs or even replicating the entire design.* Continue this 
process until you achieve the desired power. If the number of runs for a ‘right-sized’ (adequately 

powered) design exceed what you can afford, then you must find a way to decrease noise (), 

increase the signal (), or both. 
 
*(If your initial design is fractional factorial, then do not simply replicate the runs, instead chose 
a less-fractional design, thus improving power and resolution.) 

Example—Readability of Avionics Video Display Terminals (VDTs): 

What is the ideal color/typeface combination to maximize readability of video display terminals? A team 
of ergonomic engineers at an avionics manufacturer want to set up an experiment on 
three VDT factors: A. Foreground (black or yellow), B. Background (white or cyan) and C. 
typeface (Arial or Times New Roman). A full 23 factorial design (8 runs) is set up with the 
goal to minimize response time needed to read a 30-word paragraph. The signal-to-noise 
ratio is calculated as follows: 

• A 1-second improvement is the smallest value that arouses interest from the client. This is the 

signal:  = 1. 

• A prior DOE reveals a standard deviation of 0.8 seconds in readings. This is the noise:  = 0.8. 

• The signal to noise ratio (/) is 1/.8 = 1.25. The power to detect this should be at least 80%. 
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Using Stat-Ease Software to Size the VDT Experiment: 

1. For an 8-run regular 23 design, enter the delta and sigma. The program then computes the 

signal-to-noise (/) ratio of 1.25. 

 

The probability of detecting a 1 second difference at the 5% alpha threshold level for 
significance (95% confidence) is only 27.6%, which falls far short of the desired 80%. 

2. Go back and add a 2nd replicate (blocked) to the design (for a total of 16 runs) and re-evaluate 
the power. 

 

The power increases to 62.5% for the 1.25 signal/noise ratio – not good enough.  

3. Add a 3rd replicate (blocked) to the design (for a total of 24 runs) and evaluate. 

Power is now over 80% for the ratio of 1.25:  
Mission accomplished! ☺ 
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Impact of Split-Plot (vs Randomized) Design on Power: 

Illustration: 
Engineers need to determine the cause of drive gears becoming ‘dished’ (a geometric 
distortion). Three of the five suspect factors are hard to change (HTC). To accommodate 
these HTC factors in a reasonable number of runs, they select a 16-run split-plot regular 
two-level design and assess the power for a signal of 5 and a noise of 2, with the ratio of 
whole-plot to split-plot variance at the default of 1. 

Stat-Ease software then produces these power calculations: 

• The easy-to-change (ETC) factors D and E (capitalized) increase in power (from 88.9% to 98.4%) 
due to being in the “subplot” of the split-plot design. ☺ 

• However, the HTC factors a, b and c (lower-case) lose power by being restricted in their 
randomization to “whole plots”, falling from 88.9% to 58.8%.  

Fortunately, subject matter knowledge for this example indicates that the HTC factors vary far less—by a 
1-to-4 ratio—than the ETC. The experimenters therefore decrease the variance ratio from 1 to 0.25. This 
restores adequate power—85.7% (the benchmark being 80%)—to the HTC factors. ☺ 
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Procedure for Handling Response in Proportions: 

Illustration: 

A small bakery develops a new type of bread that their customers love. Unfortunately, only half of the 
loaves come out saleable—the remainder falling flat. Perhaps switching to a premium 
flour (expensive!) and/or making other changes to ingredients, e.g. yeast, might help. 
The master baker sets up a two-level factorial design for 5 factors in 16 runs, i.e., a 
high-resolution half-fraction. He figures on baking 20 loaves per run. Here are the steps 
taken to develop adequate power for this experiment. 

1. Convert the measurement to a proportion (“p”), where 
p = (#of fails or passes) / (#total units). 

2. Check () on the Edit response types. 

3. Determine your current proportion (“p-bar”) and the difference (“signal”) you want to detect. In 
this case p-bar is 0.5 (half being failures). The baker decides that it would be good to know if 
changing the factors can produce a change the proportion of a 10 percent or more. The signal is 
entered as a fraction of 0.1. 

4. Decide a starting point for the “samples per run”—20 being the number for this case. 

5. Estimate the run-to-run variation as a percent of the current proportion, assuming a very large 
number of parts were to be produced at each setup. In this case, 5% of p-bar is the estimate. 

Here is Stat-Ease software’s power-wizard entry screen for the bread-baking experiment: 

 

The proportion response power comes out to be 35.3%: not enough (80% recommended). 
(Disregard the warning about not changing the default.) This takes the air out of the baker (pun 
intended) but his spirits rise (ha ha) when he goes back and chooses the full factorial, i.e., 32 runs—
this raising the power to 66.3%. Almost there! The baker comes up with a way to squeeze more 
loaves into the oven and sees his way clear to increasing the samples per run to 30. That does the 
trick: power increasing to 82.2%. ☺ 
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Special Procedure for Handling Standard Deviation 

In many situations, you will produce a number (n) of parts or samples per run in your experiment. Then 
we recommend you compute the standard deviation of each response so you can find robust operating 
conditions by minimizing variability. If you go this route, we advise an n of 5 to 10 to get a decent 
estimate of variation. The more parts or samples per run the better, but with diminishing returns—there 
being little value in going beyond an n of 20. 

The standard power calculations for two-level factorials will work in this case, but you must come up 
with an estimate of the standard deviation of the within-run variability. 

Illustration: 

When filling packages in the food industry, manufacturers must put in at least the amount 
listed on label. By minimizing the variability in package weight, specifications can be 
tightened closer to the stated label amount weight, thus saving money without shorting 
consumers (and risking costly penalties imposed by regulatory authorities!). 

For example, let’s say that at current operating conditions for the packager, the fill-to-fill standard 
deviation is about 1.2 grams (gm). At a minimum, a 0.35 gm change in the standard deviation would be 
an important difference. The standard deviation from run-to-run varies, of course. Over time the filler is 
shut down and started up a number for times, from which the food-processing engineer calculates a 
standard deviation of 0.2 in the fill-to-fill variations. Thus, Stat-Ease software’s power wizard entry is: 

 

For a two-level factorial design with 16 runs, this produces a power above 88%—plenty good. ☺ Note 
that the sigma entered is 0.2—not 1.2. This incorrect level of noise, being many-fold higher, would 
require hundreds of runs to overpower. Do not make this mistake when calculating power for a 
response that is the standard deviation of your response. 
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Factorial Design Worksheet 

Identify opportunity and define objective:  _________________________________________________  

 ___________________________________________________________________________________  

 ___________________________________________________________________________________  

State objective in terms of measurable responses: 

• Define the change (Δy - signal) you want to detect. 

• Estimate the experimental error (σ - noise) 

• Use Δy/σ (signal to noise) to check for adequate power. 

Name Units Δy σ Δy/ σ Power Goal* 

R1:       

R2:       

R3:       

R4:       

*Goal: minimize, maximize, target=x, etc. 

Select the input factors and ranges to vary within the experiment: 

Remember that the factor levels chosen determine the size of Δy. 

Name Units Type HTC*? Low (−1) High (+1) 

A:      

B:      

C:      

D:      

E:      

F:      

G:      

H:      

J:      

K:      

*Hard-to-change (versus easy-to-change—ETC) 

Choose a design: Type:____________________________________ 

Replicates: ____,  Blocks: _____,  Center points: ____  
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Factorial Design Selection 

Regular Two-Level: Selection of full and fractional factorial designs where each factor is run at 2 levels. 
These designs are color-coded in Stat-Ease software to help you identify their nature at-a-glance. 

 White: Full factorials (no aliases). All possible combinations of factor levels are run. Provides 
information on all effects. 

◼ Green: Resolution V designs or better (main effects (ME’s) aliased with four factor interactions (4FI) 
or higher and two-factor interactions (2FI’s) aliased with three-factor interactions (3FI) or higher.) 
Good for estimating ME’s and 2FI’s. Careful: If you block, some 2FI’s may be lost! 

◼ Yellow: Resolution IV designs (ME’s clear of 2FI’s, but these are aliased with each other [2FI – 2FI].) 
Useful for screening designs where you want to determine main effects and the existence of 
interactions. 

◼ Red: Resolution III designs (ME’s aliased with 2FI’s.) Good for ruggedness testing where you hope 
your system will not be sensitive to the factors. This boils downs to a go/no-go acceptance test. 
Caution: Do not use these designs to screen for significant effects. 

Min-Run Characterize (Resolution V): Balanced (equireplicated) two-level designs containing the 
minimum runs to estimate all ME’s and 2FI’s. Check the power of these designs to make sure they can 
estimate the size effect you need. Caution: If any responses go missing, then the design degrades to 
Resolution IV. 

Irregular Res V: These fractional Resolution V “Legacy” designs, which are not powers of two (e.g.; 4 
factors in 12 runs) provide alternatives to the standard full or Res V two-level factorial designs. 

Min-Run Screen (Resolution IV): Estimates main effects only (the 2FI’s remain aliased with each other). 
Check the power. Caution: even one missing run or response degrades the aliasing to Resolution III. To 
avoid this sensitivity, accept the Stat-Ease software default that adds two extra runs (Min Run +2). 

Plackett-Burman: A “Miscellaneous” design suited only for ruggedness testing due to complex 
Resolution III aliasing. Not good for screening. 

Taguchi OA (Orthogonal Array): A “Miscellaneous” Resolution III design typically run saturated - all 
columns used for ME’s. ‘Linear graphs’ lead to estimating certain interactions. We recommend you not 
use these designs. 

Multilevel Categoric: A general factorial design good for categoric factors with any number of levels: 
Provides all possible combinations. If too many runs, use Optimal design. (Design also available in Split-
Plot.) 

Optimal (Custom): Choose any number of levels for each categoric factor. The number of runs chosen 
will depend on the model you specify (2FI by default). D-optimal factorial designs are recommended. 
(Optimal designs also available in Split-Plot.) 
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Split-Plot Designs: 

Regular Two-Level: Select the number of total factors and how many of these will be hard to change 
(HTC). The program may then change the number of runs to provide power.* The HTCs will be grouped 
in whole plots, within which the easy-to-change (ETC) factors will be randomized in subplots. From one 
group to the next, be sure to reset each factor level even if by chance it does not change. 
*(Caution: You may be warned on the power screen that “Whole-plot terms cannot be tested…” Proceed 
then with caution—accepting there being no test on HTC(s)—or go back and increase the runs.) 

Multilevel Categoric: Change factors to Hard or Easy as shown. If you see the “Cannot test…” warning 
upon Continue, then increase Replicates. 

 

 

Optimal (Custom): Change factors to Hard or Easy. Watch out for low power on the HTC factor(s). In 
that case go Back and add more Groups as shown below. Variance ratio (whole plot to subplot) of 1 is a 
balance that will work for most cases. 
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Response Surface Method (RSM) Design Worksheet 

Identify opportunity and define objective:  ________________________________________________  

 __________________________________________________________________________________  

 __________________________________________________________________________________  

 __________________________________________________________________________________  

State objective in terms of measurable responses: 

• Define the precision (d - signal) required for each response. 

• Estimate the experimental error (σ - noise) for each response. 

• Use d/σ (signal to noise) to check for adequate precision using FDS. 

Name Units d Σ FDS Goal 

R1:      

R2:      

R3:      

R4:      

Select the input factors and ranges to vary within the experiment: 

Name Units Type Low High 

A:     

B:     

C:     

D:     

E:     

F:     

G:     

H:     

Quantify any MultiLinear Constraints (MLC’s):  

 __________________________________________________________________________________  

 __________________________________________________________________________________  

Choose a design: Type:____________________________________ 

Replicates: ____,  Blocks: _____,  Center points: ____ 
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RSM Design Selection 

Central Composite Designs (CCD): 

 Standard (axial levels () for “star points” are set for rotatability): 
Good design properties, little collinearity, rotatable, orthogonal blocks, 
insensitive to outliers and missing data. Each factor has five levels. 
Region of operability must be greater than region of interest to 
accommodate axial runs. For 5 or more factors, change factorial core 
of CCD to: 

o Standard Resolution V fractional design, or  
o Min-run Res V. 

 Face-centered (FCD) ( = 1.0): 
Each factor conveniently has only three levels. Use when region of interest and 
region of operability are nearly the same. Good design properties for designs up to 
5 factors: little collinearity, cuboidal rather than rotatable, insensitive to outliers 
and missing data. (Not recommended for six or more factors due to high 
collinearity in squared terms.)  

 Practical alpha ( = 4th-root of k – the number of factors): 
Recommended for six or more factors to reduce collinearity in CCD. 

 Small (Draper-Lin) A minimal design not recommended being very sensitive to bad data. 

Box-Behnken (BBD): Each factor has only three levels. Good design properties, little 
collinearity, rotatable or nearly rotatable, some have orthogonal blocks, insensitive to 
outliers and missing data. Does not predict well at the corners of the design space. Use 
when region of interest and region of operability nearly the same. 

3-Level Factorial: Good for three factors at most. Beyond that the number of runs far 
exceeds what’s needed for a good RSM. (See table on next page - Number of Design Points 
for Various RSM Designs). Good design properties, cuboidal rather than rotatable, 
insensitive to outliers and missing data. To reduce runs for more than three factors, 
consider BBD or FCD. 

 

Hybrid: This “Legacy” design is not recommended due to being very sensitive to bad data (but better 
than the Small CCD). Runs are oddly spaced as shown in the figure) with each factor having 
four or five levels. Region of operability must be greater than region of interest to 
accommodate axial runs. 

Pentagonal: This is a “Legacy” design for two factors only which provides an interesting 
geometry with one apex (1, 0) and 4 levels of one factor versus 5 of the other. It may be of 
interest with one categoric factor at two levels to form a three-dimensional region with 
pentagonal faces on the two numeric (RSM) factors. 

Hexagonal: Another “Legacy” design for two factors only, which provides a good 
alternative to the pentagon with 5 levels of one factor versus 3 of the other. 
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Optimal (custom): Handles any or all input types, e.g., numeric discrete and/or categoric, within any 
constraints for the bare minimum of runs required for the specified polynomial model. By default, Stat-
Ease software adds optional “Lack of fit” (LOF) points (check runs) via distance-based criteria and 
“Replicate” points for pure error estimation. They bolster the design and provide for LOF testing. 

Choose from these optimal criteria: 
o I (default) - reduces the average prediction variance. (Best predictions) 
o D - minimizes the joint confidence interval for the model coefficients. (Best for finding effects, so 

this becomes the default for factorial designs) 
o A - minimizes the average confidence interval. 
o Distance based - not recommended: chooses points as far away from each other as possible, thus 

achieving maximum spread. 
and the following exchange algorithms: 

o Best (default) - chooses the best from Point or Coordinate exchange.* 
*See the Summary after building the design to see which method won out. 

o Point exchange – based on geometric candidate set, coordinates fixed*. 
*Often produces levels that round better for easier setting. 

o Coordinate exchange – candidate-set free: Points located anywhere*. 
*Generally provides more optimal levels but often not rounded very well. 

 

Definitive Screen (DSD): A “Supersaturated” three-level design for RSM which aliases squared terms 
with two-factor interactions (2FI). These designs are useful for screening main effects. They may reveal 
information about the second-order model terms and thus be helpful for optimization, but this requires 
a lot of assumptions, perhaps too many: Proceed with caution. 

 

Split-Plot Central Composite (SPCCD): Handles hard-to-change (HTC) factors using a standard RSM 
template. For more than a few factors the SPCCD may generate more runs than needed for proper 
design sizing. If so, go to the Optimal alternative for split-plot RSM. 

Split-Plot Optimal (custom): Good choice when one of more factors are HTC (generally better than 
SPCCD) and only option when factors are discrete and/or categoric or when constraints form an 
irregular experimental region. 

 

Latin Hypercube: This “Space-Filling” design (available in Stat-Ease 360) stratifies 
factors uniformly throughout the experimental region by dividing each into the same 
number of equally spaced intervals, each with exactly one setting. By not producing 
replicates, it is a good choice for experiments on simulations that produce 
deterministic results. 

Optimal Distance: Another “Space-Filling” design (also available in Stat-Ease 360) 
that, based on distance or by your chosen model, handles irregularly shaped regions. 
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Number of Points for Standard RSM Designs 

Number 
Factors 

CCD 
full 

CCD 
fractional 

CCD 
MR-5 

Box- 
Behnken 

Small 
CCD* 

DSD** Quadratic 
Coefficients† 

2 13 NA NA NA NA NA 6 

3 20 NA NA 17 15 NA 10 

4 30 NA NA 29 21 13 15 

5 50 32 NA 46 26 13 21 

6 86 52 40 54 33 13 28 

7 152 88 50 62 41 17 36 

8 272 154  90 60 120 51 17 45 

9 540 284  156 70 130 61 21 55 

10 X 286  158 82 170 71 21 66 

20 X 562 258 348 X 44 231 

30 X X 532 X X 61 496 

40 X X 908 X X NA 901 

50 X X 1382 X X NA 1376 

X = Excessive runs 

NA = Not Available 

* Small central composite design (Draper-Lin) not recommended—too minimal. 

** DSDs lack enough runs to estimate all terms in the quadratic model. Not advised/ 

† Including the intercept, linear, two-factor interaction, and quadratic (squared) terms. 
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Mixture Design Worksheet 

Identify opportunity and define objective: __________________________________________________  

 ___________________________________________________________________________________  

 ___________________________________________________________________________________  

State objective in terms of measurable responses: 

• Define the precision (d - signal) required for each response. 

• Estimate the experimental error (σ - noise) for each response. 

• Use d/σ (signal to noise) to check for adequate precision using FDS. 

Name Units d Σ FDS Goal 

R1:      

R2:      

R3:      

R4:      

Select the components and ranges to vary within the experiment: 

Name Units Type Low High 

A:     

B:     

C:     

D:     

E:     

F:     

G:     

  Mix Total:  

Quantify any MultiLinear Constraints (MLC’s):  

 ___________________________________________________________________________________  

 ___________________________________________________________________________________  

Choose a design: Type:___________________________________ 

Replicates: ____,  Blocks: _____,  Centroids: ____ 
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Mixture Design Selection 

Simplex: Applicable if all components range from 0 to 100 percent (no constraints) or they have same 
range (necessary, but not sufficient, to form a simplex geometry for the experimental region). 

 Lattice: Specify degree “m” of polynomial (1 - linear, 2 - quadratic or 3 - cubic). Design is then 
constructed of m+1 equally spaced values from 0 to 1 (coded levels of individual mixture 
component). The resulting number of blends depends on both the number of components 
(“q”) and the degree of the polynomial “m”. Centroid not necessarily part of design. 

 Centroid: This is a “Legacy” design that always includes the centroid always with the 2q-1 
distinct mixtures generated from permutations of: 

o Pure components: (1, 0, ..., 0) 
o Binary (two-part) blends: (1/2, 1/2, 0, ..., 0) 
o Tertiary (three-part) blends: (1/3, 1/3, 1/3, 0, ..., 0)  
o and so on to the overall centroid: (1/q, 1/q, ..., 1/q) 

 

Simplex Lattice versus Simplex Centroid 

Screening: Essential for six or more components. Creates design for linear model only to find the 
components with strong main effects. 

 Simplex 

 Extreme vertices (for non-simplex—detected automatically) 

Custom: 

 Optimal: (See RSM section for details.) Required for non-simplex (detected automatically) or 
you want to fit a tailored model; e.g., reduced quadratic. 
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Custom Design Selection 

Optimal (Combined): These designs combine mixture components with numerical (including 
amounts) and/or categoric process factors. For example, if you want to make filled cupcakes 
and bake them in two ovens, set up: 
 Mixture 1 components – the cake: 4 for flour, water, sugar and eggs 
 Mixture 2 components – the filling: 3 for cream cheese, salt and chocolate 
 Numeric factors – the baking process: 2 for time and temperature 
 Categoric factors – the oven: 2 types – Electric or gas. 

Split plots come in handy for combined designs such as this. For example, 
consider mixing up muffins individually by random order (being easy to change) 
and then baking a group of them together at specified times and temperatures—accomplished by 
designating these process factors as hard to change. 

Default crossed models often require excessive run. To reduce design size, via “Edit model” on the 
Optimal specification screen, consider: 

• Selecting the KCV model, which only crosses terms for the primary mixture-process 
interaction—a good compromise, or 

• Restricting the “Combined Order Limit” to Cubic. 
See RSM section for more details on optimal design options and defaults. 

Note: The model for categoric factors takes the same order as for the numeric ones (process). For 
example, if quadratic (default), the second-order two-factor interaction (2FI) model will be selected for 
the categoric factors. 

Existing: Allows for import of already-collected results either directly (“Import Data Set”), or via a 
dummy design (“Blank Spreadsheet”). Be careful: Models from happenstance data may be useless for 
prediction. Tips: 

• Runs must have all factor levels specified 

• Missing response values should be left blank, not entered as zeroes 

• Categoric levels must be consistently spelled out in the actual data and design (capitalization 
sensitive) 

• Set low (-1) and high (+1) factor levels to the actual minimum and maximum. 

• Use Graph Columns to plot each factor versus all other factors. Watch out for: 
o Outlying points that create high leverage on the resulting model. 

(If removed, re-set the -1/+1 coding to get a better analysis.) 
o High correlations with very bright blue or red colors on the matrix. 

• Use Evaluation to assess the quality of the input data for variance-inflation factors (VIF’s), 
leverages, etc.—see “Design Evaluation” guide for details 

• In the Analysis, use AutoSelect tools to reduce the model—see guide on “Automatic Model 
Selection” for details 

• Consider following up with a designed experiment based on what you learned. 

Simple Sample: Use this design choice as a tool for entering raw data to generate basic statistics (mean, 
standard deviations and intervals) for a process where no inputs are intentionally varied. There are no 
factors to enter—only a specified number of observations (runs containing one or more measured 
responses). 

User-Defined: Generates points based on geometry of design space. 
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Design Evaluation Guide  

1. Select the polynomial model you want to evaluate. First look for aliases. No aliases should be 
found. If the model is aliased, the program calculates the alias structure -- examine 
this. An aliased model implies there are either not enough unique design points, or 
the wrong set of design points was chosen. 

2. Examine the table of degrees of freedom (df) for the model. You want: 

a) Minimum 3 lack-of-fit df. 

b) Minimum 4 df for pure error. 

3. Look at the standard errors (based on s = 1) of the coefficients. They should be the same within 
type of coefficient. For example, the standard errors associated with all the linear (first order) 
coefficients should be equal. The standard errors for the cross products (second order terms) may 
be different from those for the linear standard errors, but they should all be equal to each other, 
and so on. 

4. Examine the variance inflation factors (VIF) of the coefficients: 

VIF =  
1

1- Ri

2
 

 VIF measures how much the lack of orthogonality in the design inflates the variance of that 
model coefficient. (Specifically, the standard error of a model coefficient is increased by a 
factor equal to the square root of the VIF, when compared to the standard error for the same 
model coefficient in an orthogonal design.) 

 VIF of 1 is ideal because then the coefficient is orthogonal to the remaining model terms, that 
is, the correlation coefficient (Ri

2) is 0. 

 VIFs above 10 are cause for concern. 

 VIFs above 100 are cause for alarm, indicating coefficients are poorly estimated due to 
multicollinearity. 

 VIFs over 1000 are caused by extreme collinearity. 

 VIF’s are not an appropriate measure for mixture designs, which are inherently non-
orthogonal. 

 

5. For factorial designs: Look at the power calculations to determine if the design is likely to detect the 
effects of interest. Degrees of freedom for residual error must be available to calculate power, so for 
unreplicated factorial designs, specify main effects model only. For more details, see Power 
Calculation Guide.  
 
For RSM and mixture designs: look at fraction of design space (FDS) graph to evaluate precision 
rather than power. (See FDS Guide.) 

  

 



Rev 1/15/2024 2:32:00 PM 

1-19 

6. Examine the leverages of the design points. Consider replicating points where leverage is more than 
2 times the average and/or points having leverage approaching 1. 

Average leverage =  
p

N
 

Where “p” is the number of model terms including the intercept (and any block coefficients) and 
“N” is the number of experiments. 

7. Go to Graphs, Contour (or 3D Surface) Do a plot of the standard error 
(based on s = 1). The shape of this plot depends only on the design 
points and the polynomial being fit. Ideally the design produces a flat 
error profile centered in the middle of your design space. For an RSM 
design this should appear as either a circle or a square of uniform 
precision. 

 

Repeat the “design evaluation – design modification” cycle until satisfied 
with the results. Then go ahead and run the experiment. 
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Matrix Measures (for more thorough evaluation by statistical researchers) 

1. Evaluate measures of your design matrix: 

a. Condition Number of Coefficient Matrix (ratio of max to min eigenvalues, or roots, of the X'X 
matrix): 

 = max/min 

•  = 1   no multicollinearity, i.e., orthogonal 

•  < 100   multicollinearity not serious  

•  < 1000  moderate to strong multicollinearity 

•  > 1000  severe multicollinearity 

{Note: Since mixture designs can never be orthogonal, the matrix condition number cannot be 
evaluated on an absolute scale.} 

b. Maximum, Average, and Minimum mean prediction variance of the design points. These are 
estimated by the Fraction of Design Space sample. They are the variance multipliers for the 
prediction interval around the mean. 

c. G Efficiency – this is a simple measure of average prediction variance as a percentage of the 
maximum prediction variance. If possible, try to get a G efficiency of at least 50%. Note: Lack-
of-fit and replicates tend to reduce the G efficiency of a design. 

d. Scaled D-optimality – this matrix-based measure assesses a design’s support of a model in 
terms of prediction capability. It is a single-minded criterion which often does not give a true 
measure of design quality. To get a more balanced assessment, look at all the measures 
presented during design evaluation. The D-optimality criterion minimizes the variance 
associated with the coefficients in the model. When scaled the formula becomes: 

N((determinant of (X'X)-1)1/p) 

Where N is the number of experiments and p is the number of model terms including the 
intercept and any block coefficients. Scaling allows comparison of designs with different 
number of runs. The smaller the scaled D-optimal criterion the smaller the volume of the 
joint confidence interval of the model coefficients. 

e. The determinant, generalized equivalence condition, trace and I-score are relative measures 
(the smaller the better!) used to compare designs having the same number of runs, primarily 
for algorithmic point selection. It is usually not possible to minimize all three simultaneously. 

• The determinant (related to D-optimal) measures the volume of the joint confidence 
interval of the model coefficients. 

• The trace (related to A-optimal) represents the average variance of the model coefficients. 

• The I-score (related to I-optimal) measures the integral of the prediction variance across 
the design space. 

2. Examine the correlation matrix of the model coefficients (derived from (X'X)-1). In an orthogonal 
design all correlations with other coefficients are zero. How close is your design to this ideal? 

{Note: Due to the constraint that the components sum to a constant, mixture designs can never be 
orthogonal.} 

3. Examine the correlation matrix of the independent factors (comes directly from the X matrix itself). 
In an orthogonal design none of the factors are correlated. Mixture designs can never be 
orthogonal. 
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4. Modify your design based on knowledge gained from the evaluation: 

a. Add additional runs manually or via the design tools in Stat-Ease software for augmenting any 
existing set of runs. 

b. Choose a different design. 
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Fraction of Design Space (FDS) Guide 

FDS calculations help experimenters properly size response surface (RSM) and mixture designs, for 
which the normal power calculations 
lose relevance. At a minimum (going 
with defaults), supply the delta (d)—the 
desired precision or difference to be 
detected—and the sigma (s)—the 
“noise” measured by standard deviation 
from process data. The FDS graph will 
then reveal the fraction of the design 
region that can predict the response 
with sufficient precision: 0.8 (80 
percent) or more, ideally. 

FDS results depend on the model 
specified the initial tab in Evaluation as 
well as the following options: 

 

• Error Type:  
o Mean (default) – best for typical process and/or product optimization 
o Pred – choose when the focus is the individual outcomes. Note: More runs are required to get 

similar precision with “Pred” than “Mean”. 
o Diff – recommended when searching for any change in the response, such as for verification. 

Smaller changes are more difficult to detect. 
o Tolerance – useful for setting specifications 

• delta (d) – (required entry) difference in response deemed important—this change being defined by 
Error Type: 
o Mean: half-width of confidence interval (CI), that is, precision of prediction 
o Pred: half-width of prediction interval (PI) 
o Tolerance: half-width of the tolerance interval (TI)* 

*Must specify Proportion of population (default 0.99) 
o Diff: minimum change in the response that is important to detect. 

• sigma (s) – standard deviation (default 1—override with correct value) 

• alpha – significance level (default 0.05). 

• proportion – grayed out if Error Type not set at Tolerance 

• Interval – One-Sided or Two-Sided (default) 

• Show lines – Toggles crosshairs off when changed from True (default) to False* 
*If delta to sigma ratio exceed a certain level beyond FDS of 1, no crosshairs show. 
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Factorial Analysis Guide 

1. Compute effects. Use half-normal plot to select model. Click the biggest effect (point furthest to the 
right) and continue right-to-left until the line runs through points nearest zero (or lasso all of them 
at once via a mouse drag). Alternatively (but not as easy to do), on the Pareto Chart pick effects 
from left to right, largest to smallest, until all other effects fall below the Bonferroni and/or t-value 
limit. Best approach: Pick effects using half-normal and then view them on Pareto as a ‘double 
check’. 

  

2. Choose ANOVA* (Analysis of Variance) and check the selected model: 
*(For split plots via REML—Restricted Maximum Likelihood—with p-values fine-tuned via Kenward-
Roger method.) 

a) Review the ANOVA results. 

 P-value < 0.05: significant. 

 P-value > 0.10: not significant. 

b) Examine the F tests on the regression coefficients. Look for terms that can be eliminated, 
i.e., terms having (Prob > F) > 0.10. Be sure to maintain hierarchy as advised by the 
software. 

c) Examine the F tests for the lack of fit (available only with measures of pure error from 
replicated runs). If insignificant, continue with the analysis. If lack of fit tests significant, look 
at the graphs to determine if a more complex model is necessary. If the model is useful as is, 
use it. 

d) Check for “Adeq Precision” > 4. This is a signal to noise ratio (see formula in Response 
Surface Analysis Guide). 
(Not available for split plots.) 

3. Refer to the Residual Analysis and Diagnostic Plots Guide. 
Verify the ANOVA assumptions by looking at the residual plots. 
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4. Explore the region of interest: 

a) One Factor plot (don’t use   b) Interaction plot (with  
for factors involved in       95% Least Significant 
interactions):        Difference (LSD) bars): 

       
c) Cube plot (especially useful if three factors are significant): 

 
d) Contour plot and 3D surface plot: 
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Response Surface/Mixture Analysis Guide 
1. Select a model (skip this step for split plots): 

a) Note which models are aliased: These must not be selected. 

b) “Fit Summary”: Focus on the “Suggested” model. 

c) “Sequential Model Sum of Squares”: Select the highest order polynomial where the 
additional terms are significant and the model is not aliased. 

p-value < 0.05  ☺  p-value > 0.10   

d) “Model Summary Statistics”: Focus on the model with high “Adjusted R-Squared” and high 
“Predicted R-Squared”. 

e) “Lack of Fit (LOF) Tests”: Selected model should exhibit insignificant LOF. 

p-value < 0.05    p-value > 0.10  ☺ 

No lack of fit reported? If so, the design lacks: 
i. Excess unique points beyond the number of model terms (to estimate variation about 

fitted surface), and/or 
ii. Replicate runs to estimate pure error (needed to statistically assess the lack of fit). 

2. Check the selected model: 

a) Review the ANOVA (for split plots use REML—Restricted Maximum Likelihood—with p-
values fine-tuned via Kenward-Roger method). The F-test is for the complete model, rather 
than just the additional terms for that order model as in the sequential table. Model should 
be significant (p-value < 0.05) and lack-of-fit insignificant (P-value > 0.10). 

b) Examine the F tests on the regression coefficients - can the complexity of the polynomial be 
reduced? Look for terms that can be eliminated, i.e., coefficients having p-values > 0.10. Be 
sure to maintain hierarchy. If there are many such terms, consider model reduction via Auto 
Select (for guidance see Handbook section on “Automatic Model Selection”). 

c) Check for “Adeq Precision” > 4 (not available for split plots). This is a signal to noise ratio 
given by the following formula: 

( ) ( )

( )
( ) ( )

2

1

ˆ ˆmax min 1ˆ ˆ4
ˆ

n

i

Y Y p
V Y V Y

n nV Y



=

 
−

 
 = =

 
  

  

p = number of model parameters (including intercept (b0) and any block 
coefficients) 

2 = residual MS from ANOVA table 

n = number of experiments 

d) Check that "Pred R-Squared" (not available for split plots) falls no more than 0.2 below the 
"Adj R-Squared". If so, consider model reduction. 

3. Refer to the Residual Analysis and Diagnostics Plots Guide. Verify the ANOVA assumptions by 
looking at the residual plots. 
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4. Explore the region of interest: 

a) Perturbation/Trace plots to choose the factor(s)/component(s) to “slice” through the design 
space. Choose ones having small effects (flat response curve) or components having linear 
effects (straight). In the RSM and mixture examples below, take slices of factor “A”. 

➢ RSM perturbation plot 

              

➢ Mixture trace plot (view Piepel’s direction for broadest paths) 

  

 

Perturbation/Trace plots are particularly useful after finding optimal points. They show how sensitive 
the optimum is to changes in each factor or component. 

b) Contour plots (shown below for a mixture design) to explore your design space, slicing on 
the factors/components identified from the perturbation/trace plots as well as any 
categorical factors. 
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5. Perform “Numerical” optimization to identify most desirable factor (component) levels for single or 
multiple responses. View the feasible window (‘sweet spot’) 
via “Graphical” optimization (‘overlay’ plot). See 
Optimization Guide for details. 

 

 

 

 

 

 

6. See the Confirmation node under the Post Analysis branch for the prediction interval (PI) expected 
for individual confirmation runs. Perform a number—six is good—of confirmation runs, enter them 
in to generate their mean in comparison to the PI recalculated for the sample size. Ideally it will fall 
within range. ☺ If not, consider what may have changed between the time you did the experiment 
and the subsequent confirmation runs.  
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Combined Mixture/Process Analysis Guide 

1. Select a model (skip this step for split plots): Look for what is suggested in the Fit Summary table, in 
this case: quadratic mixture by linear process (QxL). Often, as in this case, it is the one with the 
highest adjusted and predicted R-squared (row [12] 0.9601 and 0.9240). 

Combined Model Fit Summary Table 

 Mixture 
Order 

Process 
Order 

Mixture p-
value 

Process p-
value 

Adjusted R² Predicted R² 
 

1 M M 
     

2 M L 
 

< 0.0001 0.3916 0.3329 
 

3 M 2FI 
 

0.9883 0.3561 0.2507 
 

4 M Q * * 0.3561 0.2507 *Aliased 

5 M C * 0.8488 0.3432 0.2198 *Aliased 

6 L M < 0.0001 
 

0.4460 0.3919 
 

7 L L < 0.0001 < 0.0001 0.9211 0.8889 
 

8 L 2FI < 0.0001 0.6237 0.9177 0.8341 
 

9 L Q < 0.0001 
 

0.9177 0.8341 Aliased 

10 L C < 0.0001 0.9176 0.9113 0.7729 Aliased 

11 Q M 0.5401 
 

0.4373 0.3487 
 

12 Q L 0.0003 < 0.0001 0.9601 0.9240 Suggested 

13 Q 2FI 0.0028 0.1129 0.9736 0.8796 
 

14 Q Q 0.0028 * 0.9736 0.8796 *Aliased 

15 Q C 0.0389 0.7158 0.9683 -0.9445 Aliased 

16 SC M 0.6426 
 

0.4284 0.3348 
 

17 SC L 0.4611 < 0.0001 0.9598 0.9181 
 

18 SC 2FI 0.2567 0.1212 0.9802 0.8391 
 

19 SC Q 0.2567 * 0.9802 0.8391 *Aliased 

20 SC C * * 
  

*Aliased 
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This sequential table shows the significance of terms added layer-by-layer to the model above. For 
example, in this case starting with the mean by mean (MxM) model (row [1]): 

 Linear (L) process terms provide significant information beyond the mean (M) model 
(p<0.0001 in row [2]). 

 Adding 2FI process terms provides no benefit ([3] p=0.9883). 

 The next two models (rows [4] and [5]), MxQ and MxC are aliased – do not pick them!   

 Start again from MxM. 

 Linear (L) mixture terms are significant ([6] p<0.0001). 

 L process terms are a significant addition ([7] p<0.0001). 

 2FI process terms do not add significantly ([8] p=0.6237). 

 The next two models ([9] and [10]), LxQ and LxC are aliased. 

 Adding the Q-Mix terms provides no benefit ([11] p=0.5401). 

 Add L process terms to significantly improve the model fit ([12] p<0.0001). 

 Adding the 2FI terms provide little benefit ([13] p=0.1129) and they reduce the predicted R2. 
Thus, the QxL combined mixture-by-process model is suggested. 

2. Due to the complexity of combined models, try Automatic Model Selection to remove unnecessary 
terms from the model. 

See the next page for the details of automatic model selection. 
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Automatic Model Selection 

Automatic model selection (“Auto Select”) algorithmically chooses the terms to best keep in the 
model—discarding the others. Four criteria are provided: AICc, BIC, p-value, and Adjusted R-Squared 
with four selection methods: Forward, Backward, Stepwise and All Hierarchical. The table below shows 
the eight available combinations.  

  Selection 

  
Forward Backward Stepwise 

All 
Hierarchical 

C
ri

te
ri

o
n
 AICc Yes* Yes* No No 

BIC Yes* Yes* No No 

p-value Yes Yes* Yes No 

Adjusted R-Squared No No No Yes 

* Best selection method for the given criterion 

Automatic Model Selection cannot substitute for your judgment based on subject-matter knowledge. 
Please take the time to review the results on the ANOVA and Diagnostics before using the analysis to 
make decisions. 

You are encouraged to use multiple combinations of the criterion and selection directions to help decide 
which terms form the best model. AICc with forward selection is the default and best general method 
for selecting the model. We suggest you also try a backward AICc selection. P-value using backward 
selection is also recommended and may be more familiar. 

Details on Criterion: 

• “AICc “stands for Akaike Information Criterion corrected for a small design. Akaike is 
pronounced (ah kah ee Kay). It measures goodness of fit. 

• “BIC” stands for Bayesian Information Criterion. It is an alternative to AICc that may work better 
for larger designs and models. 

• “p-value” is the standard method looking for significant terms to keep and/or insignificant terms 
to remove from the model. 

• “Adjusted R-squared” relates how well the current model explains the data after an adjustment 
(from raw R-squared) to prevent too many terms. 

Details on Selection: 

• “Forward” adds terms to a model that improve the criterion. 

• “Backward” removes terms from a model that are detrimental to the criterion. 

• “Stepwise” is a combination of forward and backward that first adds terms that improve the 
criterion, then checks whether any terms should be removed. 

• “All hierarchical” selection checks all possible models that maintain hierarchy, keeping the one 
with the best criterion score. 
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Residual Analysis and Diagnostic Plots Guide 

Residual analysis is necessary to confirm that the assumptions for the ANOVA are met. Other diagnostic 
plots may provide interesting information in some situations. ALWAYS review these plots! 

A. Diagnostic plots 

1. Plot the (externally) studentized residuals: 

a) Normal plot - should be straight line. 

     

 BAD: S shape GOOD: Linear or Normal 

b) Residuals (ei) vs predicted - should be random scatter. 

     

 BAD: Megaphone shape GOOD: Random scatter 
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c) Residuals (ei) vs run - should be random scatter, no trends. 

   

 BAD: Trend GOOD: No pattern 

Also, look for externally studentized residuals 
outside limits. These runs are statistical outliers 
that may indicate: 

 a problem with the model, 

 a transformation, 

 a special cause that merits ignoring the 
result or run. 

 

 

 

2. View the predicted vs actual plot whose points should be randomly scattered along the 45-degree 
line. Groups of points above or below the line indicate areas of over or under prediction. 
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3. Use the Box-Cox plot to determine if a power law transformation might be appropriate for your 
data. The blue line indicates the current transformation (at Lambda =1 for none) and the green line 
indicates the best lambda value. Red lines indicate a 95% confidence interval associated with the 
best lambda value. Stat-Ease software recommends the standard transformation, such as log, 
closest to the best lambda value unless the confidence interval includes 1, in which case the 
recommendation will be “None.” 

    

 Before Transformation After Transformation 

4. Residuals (ei) vs factor – especially useful with blocks. Should be split by the zero-line at either end 
of the range – no obvious main effect (up or down). If you see an effect, go back, add it to the 
predictive model and assess its statistical significance. Relatively similar variation between levels. 
Watch ONLY for very large differences. 

    

 BAD: More variation at one end GOOD: Random scatter both ends 
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Influence plots – review if Diagnostic plots indicate problems 

1. Cook’s Distance helps if you see more than one 
outlier in other diagnostic plots. Investigate the run 
with the largest Cook’s Distance first. Often, if this 
run is ignored due to a special cause, other 
apparent outliers can be explained by the model. 

 

 

 

2. Watch for leverage vs run values at or beyond twice the average leverage. These runs will unduly 
influence at least one model parameter. If identified prior to running the experiment, it can be 
replicated to reduce leverage. Otherwise, all you can do is check the actual responses to be sure 
they are as expected for the factor settings. Be especially careful of any leverages at one (1.0). These 
runs will be fitted exactly with no residual! 

  

 BAD: Some at twice the average GOOD: All the same 

3. Deletion diagnostics – statistics calculated by taking each run out, one after the other, and seeing 
how this affects the model fit. 

a) DFFITS (difference in fits) is another statistic helpful for detecting influential runs. Do not be 
overly alarmed at points outside of limits: Just check that they are not extraordinary. If 
earlier diagnostics show outliers that do not go out of bounds on DFFITS, then these do not 
create a significant difference in fits and thus you need not be overly concerned. ☺ 
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b) DFBETAS (difference in beta coefficients) breaks 
down the impact of any given run on a particular 
model term. If you see an excessive value, consider 
whether a factor in the term falls beyond a 
reasonable range (for example, it may be that an axial 
(star) point in a CCD projects outside of the feasible 
operating region) and, if so, try ignoring this 
particular run. 

 

 

 

 

 

Statistical Details on Diagnostic Measures 

Residual (
i i îe=y-y ): 

Difference between the actual individual value (
iy ) and the value predicted from the model (

iŷ ). 

Leverage ( ( ) i

1TT
iii xXXxh

−

=  where x is factor level and X is design matrix): 

Numerical value between 0 and 1 that indicates the potential for a case to influence the model fit. A 
leverage of 1 means the predicted value at that particular case will exactly equal the observed value of 
the experiment (residual=0.) The sum of leverage values across all cases (design points) equals the 
number of coefficients (including the constant) fit by the model. The maximum leverage an experiment 
can have is 1/k, where k is the number of times the experiment is replicated. Values larger than 2 times 
the average leverage are flagged. 

Internally Studentized Residual (
( )

i
i

ii

e
r
s 1 h

=
−

):  

The residual divided by the estimated standard deviation of that residual (dependent on leverage), 
which measures the number of standard deviations separating the actual from predicted values. 

Externally Studentized Residual ( i
i

1 ii

e
t
s 1 h

−

=
−

): 

This “outlier t” value is calculated by leaving the run in-question out of the analysis and estimating the 
response from the remaining runs. It represents the number of standard deviations between this 
predicted value and the actual response. Runs with large t values (rule-of-thumb: |t| > 3.5) are flagged 
and should be investigated. 

Note: For verification runs, this is calculated using the predicted error (an expansion of the hat matrix). 

DFFITS (
i i, i

i

1 ii

ˆ ˆy y
DFFITS

s h

−

−

−
= , alternatively 

1/2

ii
i i

ii

h
DFFITS t

1 h

 
=  

− 
):  
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DFFFITS measures the influence each individual case (i) has on the predicted value (see Myers1 page 
284.) It is a function of leverage (h). Mathematically it is the studentized difference between the 
predicted value with and without observation “i”. As shown by the alternative formula, DFFITS 
represents the externally studentized residual (ti) magnified by high leverage points and shrunk by low 
leverage points. Note that DFFITs becomes undefined for leverages of one (h=1). 

DFBETAS (
j j, i

j,i

1 jj

ŷ
DFBETAS

s c

−

−

 −
= , cjj is the jth diagonal element of (X’X)-1):  

DFBETAS measures the influence each individual case (i) has on each model coefficient (βj). It represents 
the number of standard errors that the jth beta-coefficient changes if the ith observation is removed. Like 
DFFITS, this statistic becomes undefined for leverages of one (h=1). DFBETAS are calculated for each 
beta-coefficient, so make sure to use the pull-down menu and click through the terms (the down arrow is 
a good shortcut key – also, try the wheel if you have one on your mouse). 

Cook's Distance ( 2 ii
i i

ii

h1
D r

p 1 h

 
=  

− 
): 

A measure of how much the regression would change if the case is omitted from the analysis (see 
Weisberg2 page 118). Relatively large values are associated with cases with high leverage and large 
studentized residuals. Cases with large Di values relative to the other cases should be investigated. Look 
for mistakes in recording, an incorrect model, or a design point far from the others. 

References: 

1. Myers, Raymond: Classical and Modern Regression with Applications, 2nd edition, 2000, Duxbury 
Press. 

2. Weisberg, Stanford: Applied Linear Regression, 4th edition, 2013, John Wiley & Sons, Inc. 
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Optimization Guide 

Numerical Optimization: 

1. Analyze each response separately and establish an appropriate transformation and model for each. 
Be sure the fitted surface adequately represents your process. Check for: 

a) A significant model, i.e., a large F-value with p<0.05. 

b) Insignificant lack-of-fit, i.e., an F-value near one with p>0.10. 

c) Adequate precision, i.e., greater than 4. 

d) Well-behaved residuals. 

2. Set the following criteria for the desirability optimization: 

a) Goal: “maximize”, “minimize”, “target”, “in-range” and “Cpk”. Responses-only: “none” 
(default). Factors-only (default “in range”): “equal-to”. 

b) Limits lower and upper: Both ends required to establish the desirability from 0 or 1. 

c) Weight (optional): Enter 0.1 to 10 or drag the desirability ramp up (lighter) or down 
(heavier). The default of 1 keeps it linear. Weights >1 give more emphasis to the goal and 
vice-versa. 

d) Importance (optional): Changes goal’s importance less (+) to more (+++++) relative to the 
others (default +++). 

3. Run the optimization (press Solutions). 

 Report shows settings of the factors, response values, and desirability for each solution from 
top to bottom. 

 Ramps show settings for all factors and the resulting predicted values for responses and where 
these fall on their desirability ramps. Cycle through rank of solution from top to bottom. 

 Bar Graph displays how well each variable satisfied their criterion. 

4. Graph the desirability (shown) and the individual responses. 
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Graphical Optimization: 

1. Criteria require at least one limit for at least 
one response: 

2. Lower only if maximized (unlike numerical 
optimization where you must enter both lower 
and upper limits!) 

 Upper only if minimized 

 Lower and upper (specification range) if 
goal is target. 

3. Graph the optimal point identified in the 
numerical optimization by clicking the #1 
solution. It overlays all responses – shaded 
areas do not meet the specified criteria. The 
flagged window shows the “sweet spot”. For a 
more conservative result, put in the confidence 
interval (CI) shown here or, for quality by 
design (QbD), the tolerance interval (TI). 

Suggestions for achieving desirable outcome: 

Numerical optimization provides powerful insights when combined with graphical analysis. However, it 
cannot substitute for subject matter knowledge. For example, you may define what you consider to be 
optimum, only to find zero desirability everywhere! To avoid finding no optimums, set broad 
optimization criteria and then narrow down as you gain knowledge. Most often, multiple passes are 
needed to find the “best” factor levels to simultaneously satisfy all operational constraints. 
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Inverses, 1st & 2nd Derivatives of Transformations 

Transform 
Square root 

Counts 

Loge 

Variation 

Log10 

Variation 

Inverse Square Root 

 

Power  
(lambda) 

0.5 0 0 -0.5 

Formula y = y+k  ( )y ln y k = +  ( )y log y k = +  
1

y =
y+k

  

Inverse 
2y y k= −  

yy e k
= −  

yy 10 k
= −  

2y y k−= −  

1st Derivative 
y
2y

y


=


 ( ) y yy

ln e e e
y

 
= =


 ( ) yy

ln 10 10
y


=


 3y

2y
y

−
= −


 

2nd Derivative 
 


=



2

2

y
2

y'
 


=



2
y '

2

y
e

y'
 ( )( )


=



2
2 y '

2

y
ln 10 10

y'
 

−
=



2
4

2

y
6y '

y '
 

      

Transform 
Inverse 

Rates 
Power 

when all else fails 

ArcSin Square Root 
Binomial data 

y is a fraction (0-1) 
y’ in radians 

Logit 
Asymptotically bounded 

data 
LL=lower limit 
UL=upper limit 

Power  
(lambda) 

-1 λ NA NA 

Formula 
1

y =
y+k

  ( )y= y+k


  -1y =sin y  
y LL

y =ln
UL y

 −
  

− 
 

Inverse 
1y y k−= −  ( )

1

y y k= +  ( ) 2y=(sin y )  ( )y
y

UL e LL
y

1 e





+
=

+
 

1st Derivative 
2y

y
y

−
= −


 ( )

1
1y 1

y
y

 
− 

 


=
 

 ( ) ( )
y

2sin y cos y
y


 =


 

( )

( )

y

2
y

e UL LLy

y 1 e





−
=

 +
 

2nd  
Derivative 

 

−
=



2
3

2

y
2y '

y '
 ( )

 
− 

 
  

= − 
   

2 1
2

2

y 1 1
1 y'

y'
 ( )


=



2

2

y
2cos 2y '

y'
 

( )( )

( )

− −
=

 +

y ' y '2
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Z-Table: 

Tail area of unit normal distribution  

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641 

0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247 

0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859 

0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483 

0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121 

0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776 

0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451 

0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148 

0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867 

0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611 

1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379 

1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170 

1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985 

1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 

1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681 

1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559 

1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455 

1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367 

1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294 

1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 

2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183 

2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143 

2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110 

2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084 

2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064 

2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048 

2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036 

2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 

2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019 

2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 

3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010 

3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007 

3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005 

3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 

3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 

3.5 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

3.6 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

3.7 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

3.8 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

3.9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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One-tailed / Two-tailed t-Table 
Probability points of the t-distribution 
with df degrees of freedom                                                 

 tail area probability 

1-tail 0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

2-tail 0.80 0.50 0.20 0.10 0.050 0.02 0.010 0.0050 0.002 0.0010 

df=1 0.325 1.000 3.078 6.314 12.706 31.821 63.657 127.32 318.31 636.62 

2 0.289 0.816 1.886 2.920 4.303 6.965 9.925 14.089 22.326 31.598 

3 0.277 0.765 1.638 2.353 3.182 4.541 5.841 7.453 10.213 12.924 

4 0.271 0.741 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610 

5 0.267 0.727 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869 

6 0.265 0.718 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959 

7 0.263 0.711 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408 

8 0.262 0.706 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041 

9 0.261 0.703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781 

10 0.260 0.700 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587 

11 0.260 0.697 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437 

12 0.259 0.695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318 

13 0.259 0.694 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221 

14 0.258 0.692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140 

15 0.258 0.691 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073 

16 0.258 0.690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015 

17 0.257 0.689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965 

18 0.257 0.688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922 

19 0.257 0.688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883 

20 0.257 0.687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850 

21 0.257 0.686 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819 

22 0.256 0.686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792 

23 0.256 0.685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767 

24 0.256 0.685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745 

25 0.256 0.684 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725 

26 0.256 0.684 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707 

27 0.256 0.684 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690 

28 0.256 0.683 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674 

29 0.256 0.683 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659 

30 0.256 0.683 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646 

40 0.255 0.681 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551 

60 0.254 0.679 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460 

120 0.254 0.677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373 

 0.253 0.674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291 
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c2

c2

Area = 

 

Cumulative Distribution of Chi-Square 

Probability of a Greater value 

 df 0.995 0.99 0.975 0.95 0.90 0.75 0.50 0.25 0.10 0.05 0.025 0.01 0.005 

1   0.001 0.004 0.016 0.102 0.455 1.32 2.71 3.84 5.02 6.64 7.88 

2 0.010 0.020 0.051 0.103 0.211 0.575 1.39 2.77 4.61 5.99 7.38 9.21 10.60 

3 0.072 0.115 0.216 0.352 0.584 1.21 2.37 4.11 6.25 7.82 9.35 11.35 12.84 

4 0.207 0.297 0.484 0.711 1.06 1.92 3.36 5.39 7.78 9.49 11.14 13.28 14.86 

5 0.412 0.554 0.831 1.15 1.61 2.68 4.35 6.63 9.24 11.07 12.83 15.09 16.75 

6 0.676 0.872 1.24 1.64 2.20 3.46 5.35 7.84 10.65 12.59 14.45 16.81 18.55 

7 0.989 1.24 1.69 2.17 2.83 4.26 6.35 9.04 12.02 14.07 16.01 18.48 20.28 

8 1.34 1.65 2.18 2.73 3.49 5.07 7.34 10.22 13.36 15.51 17.54 20.09 21.96 

9 1.74 2.09 2.70 3.33 4.17 5.90 8.34 11.39 14.68 16.92 19.02 21.67 23.59 

10 2.16 2.56 3.25 3.94 4.87 6.74 9.34 12.55 15.99 18.31 20.48 23.21 25.19 

11 2.60 3.05 3.82 4.58 5.58 7.58 10.34 13.70 17.28 19.68 21.92 24.73 26.76 

12 3.07 3.57 4.40 5.23 6.30 8.44 11.34 14.85 18.55 21.03 23.34 26.22 28.30 

13 3.57 4.11 5.01 5.89 7.04 9.30 12.34 15.98 19.81 22.36 24.74 27.69 29.82 

14 4.08 4.66 5.63 6.57 7.79 10.17 13.34 17.12 21.06 23.69 26.12 29.14 31.32 

15 4.60 5.23 6.26 7.26 8.55 11.04 14.34 18.25 22.31 25.00 27.49 30.58 32.80 

16 5.14 5.81 6.91 7.96 9.31 11.91 15.34 19.37 23.54 26.30 28.85 32.00 34.27 

17 5.70 6.41 7.56 8.67 10.09 12.79 16.34 20.49 24.77 27.59 30.19 33.41 35.72 

18 6.27 7.02 8.23 9.39 10.87 13.68 17.34 21.61 25.99 28.87 31.53 34.81 37.16 

19 6.84 7.63 8.91 10.12 11.65 14.56 18.34 22.72 27.20 30.14 32.85 36.19 38.58 

20 7.43 8.26 9.59 10.85 12.44 15.45 19.34 23.83 28.41 31.41 34.17 37.57 40.00 

21 8.03 8.90 10.28 11.59 13.24 16.34 20.34 24.94 29.62 32.67 35.48 38.93 41.40 

22 8.64 9.54 10.98 12.34 14.04 17.24 21.34 26.04 30.81 33.92 36.78 40.29 42.80 

23 9.26 10.20 11.69 13.09 14.85 18.14 22.34 27.14 32.01 35.17 38.08 41.64 44.18 

24 9.89 10.86 12.40 13.85 15.66 19.04 23.34 28.24 33.20 36.42 39.36 42.98 45.56 

25 10.52 11.52 13.12 14.61 16.47 19.94 24.34 29.34 34.38 37.65 40.65 44.31 46.93 

26 11.16 12.20 13.84 15.38 17.29 20.84 25.34 30.44 35.56 38.89 41.92 45.64 48.29 

27 11.81 12.88 14.57 16.15 18.11 21.75 26.34 31.53 36.74 40.11 43.20 46.96 49.65 

28 12.46 13.57 15.31 16.93 18.94 22.66 27.34 32.62 37.92 41.34 44.46 48.28 50.99 

29 13.12 14.26 16.05 17.71 19.77 23.57 28.34 33.71 39.09 42.56 45.72 49.59 52.34 

30 13.79 14.95 16.79 18.49 20.60 24.48 29.34 34.80 40.26 43.77 46.98 50.89 53.67 

40 20.71 22.16 24.43 26.51 29.05 33.66 39.34 45.62 51.81 55.76 59.34 63.69 66.77 

50 27.99 29.71 32.36 34.76 37.69 42.94 49.34 56.33 63.17 67.51 71.42 76.15 79.49 

60 35.53 37.49 40.48 43.19 46.46 52.29 59.34 66.98 74.40 79.08 83.30 88.38 91.95 

70 43.28 45.44 48.76 51.74 55.33 61.70 69.33 77.58 85.53 90.53 95.02 100.43 104.22 

80 51.17 53.54 57.15 60.39 64.28 71.15 79.33 88.13 96.58 101.88 106.63 112.33 116.32 

90 59.20 61.75 65.65 69.13 73.29 80.63 89.33 98.65 107.57 113.15 118.14 124.12 128.30 

100 67.33 70.07 74.22 77.93 82.36 90.13 99.33 109.14 118.50 124.34 129.56 135.81 140.17 
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 3-4 

F-Table for 10% 
 

Percentage points of the F-distribution: upper 
10% points 

dfnum
 

dfden  

1 2 3 4 5 6 7 8 9 10 15 20 

1 39.863 49.500 53.593 55.833 57.240 58.204 58.906 59.439 59.858 60.195 61.220 61.740 

2 8.526 9.000 9.162 9.243 9.293 9.326 9.349 9.367 9.381 9.392 9.425 9.441 

3 5.538 5.462 5.391 5.343 5.309 5.285 5.266 5.252 5.240 5.230 5.200 5.184 

4 4.545 4.325 4.191 4.107 4.051 4.010 3.979 3.955 3.936 3.920 3.870 3.844 

5 4.060 3.780 3.619 3.520 3.453 3.405 3.368 3.339 3.316 3.297 3.238 3.207 

6 3.776 3.463 3.289 3.181 3.108 3.055 3.014 2.983 2.958 2.937 2.871 2.836 

7 3.589 3.257 3.074 2.961 2.883 2.827 2.785 2.752 2.725 2.703 2.632 2.595 

8 3.458 3.113 2.924 2.806 2.726 2.668 2.624 2.589 2.561 2.538 2.464 2.425 

9 3.360 3.006 2.813 2.693 2.611 2.551 2.505 2.469 2.440 2.416 2.340 2.298 

10 3.285 2.924 2.728 2.605 2.522 2.461 2.414 2.377 2.347 2.323 2.244 2.201 

11 3.225 2.860 2.660 2.536 2.451 2.389 2.342 2.304 2.274 2.248 2.167 2.123 

12 3.177 2.807 2.606 2.480 2.394 2.331 2.283 2.245 2.214 2.188 2.105 2.060 

13 3.136 2.763 2.560 2.434 2.347 2.283 2.234 2.195 2.164 2.138 2.053 2.007 

14 3.102 2.726 2.522 2.395 2.307 2.243 2.193 2.154 2.122 2.095 2.010 1.962 

15 3.073 2.695 2.490 2.361 2.273 2.208 2.158 2.119 2.086 2.059 1.972 1.924 

16 3.048 2.668 2.462 2.333 2.244 2.178 2.128 2.088 2.055 2.028 1.940 1.891 

17 3.026 2.645 2.437 2.308 2.218 2.152 2.102 2.061 2.028 2.001 1.912 1.862 

18 3.007 2.624 2.416 2.286 2.196 2.130 2.079 2.038 2.005 1.977 1.887 1.837 

19 2.990 2.606 2.397 2.266 2.176 2.109 2.058 2.017 1.984 1.956 1.865 1.814 

20 2.975 2.589 2.380 2.249 2.158 2.091 2.040 1.999 1.965 1.937 1.845 1.794 

21 2.961 2.575 2.365 2.233 2.142 2.075 2.023 1.982 1.948 1.920 1.827 1.776 

22 2.949 2.561 2.351 2.219 2.128 2.060 2.008 1.967 1.933 1.904 1.811 1.759 

23 2.937 2.549 2.339 2.207 2.115 2.047 1.995 1.953 1.919 1.890 1.796 1.744 

24 2.927 2.538 2.327 2.195 2.103 2.035 1.983 1.941 1.906 1.877 1.783 1.730 

25 2.918 2.528 2.317 2.184 2.092 2.024 1.971 1.929 1.895 1.866 1.771 1.718 

26 2.909 2.519 2.307 2.174 2.082 2.014 1.961 1.919 1.884 1.855 1.760 1.706 

27 2.901 2.511 2.299 2.165 2.073 2.005 1.952 1.909 1.874 1.845 1.749 1.695 

28 2.894 2.503 2.291 2.157 2.064 1.996 1.943 1.900 1.865 1.836 1.740 1.685 

29 2.887 2.495 2.283 2.149 2.057 1.988 1.935 1.892 1.857 1.827 1.731 1.676 

30 2.881 2.489 2.276 2.142 2.049 1.980 1.927 1.884 1.849 1.819 1.722 1.667 

40 2.835 2.440 2.226 2.091 1.997 1.927 1.873 1.829 1.793 1.763 1.662 1.605 

60 2.791 2.393 2.177 2.041 1.946 1.875 1.819 1.775 1.738 1.707 1.603 1.543 

120 2.748 2.347 2.130 1.992 1.896 1.824 1.767 1.722 1.684 1.652 1.545 1.482 

100K 2.706 2.303 2.084 1.945 1.847 1.774 1.717 1.670 1.632 1.599 1.487 1.421 

K (Multiply this value by 1000) 

F

10%
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 3-5 

F-Table for 5% 

Percentage points of the F-distribution: 
upper 5% points 

dfnum  

dfden
 

1 2 3 4 5 6 7 8 9 10 15 20 

1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88 245.95 248.01 

2 18.513 19.000 19.164 19.247 19.296 19.330 19.353 19.371 19.385 19.396 19.429 19.446 

3 10.128 9.552 9.277 9.117 9.013 8.941 8.887 8.845 8.812 8.786 8.703 8.660 

4 7.709 6.944 6.591 6.388 6.256 6.163 6.094 6.041 5.999 5.964 5.858 5.803 

5 6.608 5.786 5.409 5.192 5.050 4.950 4.876 4.818 4.772 4.735 4.619 4.558 

6 5.987 5.143 4.757 4.534 4.387 4.284 4.207 4.147 4.099 4.060 3.938 3.874 

7 5.591 4.737 4.347 4.120 3.972 3.866 3.787 3.726 3.677 3.637 3.511 3.445 

8 5.318 4.459 4.066 3.838 3.687 3.581 3.500 3.438 3.388 3.347 3.218 3.150 

9 5.117 4.256 3.863 3.633 3.482 3.374 3.293 3.230 3.179 3.137 3.006 2.936 

10 4.965 4.103 3.708 3.478 3.326 3.217 3.135 3.072 3.020 2.978 2.845 2.774 

11 4.844 3.982 3.587 3.357 3.204 3.095 3.012 2.948 2.896 2.854 2.719 2.646 

12 4.747 3.885 3.490 3.259 3.106 2.996 2.913 2.849 2.796 2.753 2.617 2.544 

13 4.667 3.806 3.411 3.179 3.025 2.915 2.832 2.767 2.714 2.671 2.533 2.459 

14 4.600 3.739 3.344 3.112 2.958 2.848 2.764 2.699 2.646 2.602 2.463 2.388 

15 4.543 3.682 3.287 3.056 2.901 2.790 2.707 2.641 2.588 2.544 2.403 2.328 

16 4.494 3.634 3.239 3.007 2.852 2.741 2.657 2.591 2.538 2.494 2.352 2.276 

17 4.451 3.592 3.197 2.965 2.810 2.699 2.614 2.548 2.494 2.450 2.308 2.230 

18 4.414 3.555 3.160 2.928 2.773 2.661 2.577 2.510 2.456 2.412 2.269 2.191 

19 4.381 3.522 3.127 2.895 2.740 2.628 2.544 2.477 2.423 2.378 2.234 2.155 

20 4.351 3.493 3.098 2.866 2.711 2.599 2.514 2.447 2.393 2.348 2.203 2.124 

21 4.325 3.467 3.072 2.840 2.685 2.573 2.488 2.420 2.366 2.321 2.176 2.096 

22 4.301 3.443 3.049 2.817 2.661 2.549 2.464 2.397 2.342 2.297 2.151 2.071 

23 4.279 3.422 3.028 2.796 2.640 2.528 2.442 2.375 2.320 2.275 2.128 2.048 

24 4.260 3.403 3.009 2.776 2.621 2.508 2.423 2.355 2.300 2.255 2.108 2.027 

25 4.242 3.385 2.991 2.759 2.603 2.490 2.405 2.337 2.282 2.236 2.089 2.007 

26 4.225 3.369 2.975 2.743 2.587 2.474 2.388 2.321 2.265 2.220 2.072 1.990 

27 4.210 3.354 2.960 2.728 2.572 2.459 2.373 2.305 2.250 2.204 2.056 1.974 

28 4.196 3.340 2.947 2.714 2.558 2.445 2.359 2.291 2.236 2.190 2.041 1.959 

29 4.183 3.328 2.934 2.701 2.545 2.432 2.346 2.278 2.223 2.177 2.027 1.945 

30 4.171 3.316 2.922 2.690 2.534 2.421 2.334 2.266 2.211 2.165 2.015 1.932 

40 4.085 3.232 2.839 2.606 2.449 2.336 2.249 2.180 2.124 2.077 1.924 1.839 

60 4.001 3.150 2.758 2.525 2.368 2.254 2.167 2.097 2.040 1.993 1.836 1.748 

120 3.920 3.072 2.680 2.447 2.290 2.175 2.087 2.016 1.959 1.910 1.750 1.659 

100K 3.842 2.996 2.605 2.372 2.214 2.099 2.010 1.939 1.880 1.831 1.666 1.571 

K (Multiply this value by 1000)

F

5%
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F-Table for 2.5% 

Percentage points of the F-distribution: upper 
2.5% points 

dfnum  

dfden
 

1 2 3 4 5 6 7 8 9 10 15 20 

1 647.79 799.50 864.16 899.58 921.85 937.11 948.22 956.66 963.28 968.63 984.87 993.10 

2 38.506 39.000 39.165 39.248 39.298 39.331 39.355 39.373 39.387 39.398 39.431 39.448 

3 17.443 16.044 15.439 15.101 14.885 14.735 14.624 14.540 14.473 14.419 14.253 14.167 

4 12.218 10.649 9.979 9.605 9.364 9.197 9.074 8.980 8.905 8.844 8.657 8.560 

5 10.007 8.434 7.764 7.388 7.146 6.978 6.853 6.757 6.681 6.619 6.428 6.329 

6 8.813 7.260 6.599 6.227 5.988 5.820 5.695 5.600 5.523 5.461 5.269 5.168 

7 8.073 6.542 5.890 5.523 5.285 5.119 4.995 4.899 4.823 4.761 4.568 4.467 

8 7.571 6.059 5.416 5.053 4.817 4.652 4.529 4.433 4.357 4.295 4.101 3.999 

9 7.209 5.715 5.078 4.718 4.484 4.320 4.197 4.102 4.026 3.964 3.769 3.667 

10 6.937 5.456 4.826 4.468 4.236 4.072 3.950 3.855 3.779 3.717 3.522 3.419 

11 6.724 5.256 4.630 4.275 4.044 3.881 3.759 3.664 3.588 3.526 3.330 3.226 

12 6.554 5.096 4.474 4.121 3.891 3.728 3.607 3.512 3.436 3.374 3.177 3.073 

13 6.414 4.965 4.347 3.996 3.767 3.604 3.483 3.388 3.312 3.250 3.053 2.948 

14 6.298 4.857 4.242 3.892 3.663 3.501 3.380 3.285 3.209 3.147 2.949 2.844 

15 6.200 4.765 4.153 3.804 3.576 3.415 3.293 3.199 3.123 3.060 2.862 2.756 

16 6.115 4.687 4.077 3.729 3.502 3.341 3.219 3.125 3.049 2.986 2.788 2.681 

17 6.042 4.619 4.011 3.665 3.438 3.277 3.156 3.061 2.985 2.922 2.723 2.616 

18 5.978 4.560 3.954 3.608 3.382 3.221 3.100 3.005 2.929 2.866 2.667 2.559 

19 5.922 4.508 3.903 3.559 3.333 3.172 3.051 2.956 2.880 2.817 2.617 2.509 

20 5.871 4.461 3.859 3.515 3.289 3.128 3.007 2.913 2.837 2.774 2.573 2.464 

21 5.827 4.420 3.819 3.475 3.250 3.090 2.969 2.874 2.798 2.735 2.534 2.425 

22 5.786 4.383 3.783 3.440 3.215 3.055 2.934 2.839 2.763 2.700 2.498 2.389 

23 5.750 4.349 3.750 3.408 3.183 3.023 2.902 2.808 2.731 2.668 2.466 2.357 

24 5.717 4.319 3.721 3.379 3.155 2.995 2.874 2.779 2.703 2.640 2.437 2.327 

25 5.686 4.291 3.694 3.353 3.129 2.969 2.848 2.753 2.677 2.613 2.411 2.300 

26 5.659 4.265 3.670 3.329 3.105 2.945 2.824 2.729 2.653 2.590 2.387 2.276 

27 5.633 4.242 3.647 3.307 3.083 2.923 2.802 2.707 2.631 2.568 2.364 2.253 

28 5.610 4.221 3.626 3.286 3.063 2.903 2.782 2.687 2.611 2.547 2.344 2.232 

29 5.588 4.201 3.607 3.267 3.044 2.884 2.763 2.669 2.592 2.529 2.325 2.213 

30 5.568 4.182 3.589 3.250 3.026 2.867 2.746 2.651 2.575 2.511 2.307 2.195 

40 5.424 4.051 3.463 3.126 2.904 2.744 2.624 2.529 2.452 2.388 2.182 2.068 

60 5.286 3.925 3.343 3.008 2.786 2.627 2.507 2.412 2.334 2.270 2.061 1.944 

120 5.152 3.805 3.227 2.894 2.674 2.515 2.395 2.299 2.222 2.157 1.945 1.825 

 5.024 3.689 3.116 2.786 2.567 2.408 2.288 2.192 2.114 2.048 1.833 1.709 

F

2.5%
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F-Table for 1% 

Percentage points of the F-distribution: 
upper 1% points 

dfnum  

dfden
 

1 2 3 4 5 6 7 8 9 10 15 20 

1 4052.2 4999.5 5403.3 5624.6 5763.6 5859.0 5928.3 5981.1 6022.5 6055.8 6157.3 6208.7 

2 98.503 99.000 99.166 99.249 99.299 99.333 99.356 99.374 99.388 99.399 99.433 99.449 

3 34.116 30.817 29.457 28.710 28.237 27.911 27.672 27.489 27.345 27.229 26.872 26.690 

4 21.198 18.000 16.694 15.977 15.522 15.207 14.976 14.799 14.659 14.546 14.198 14.020 

5 16.258 13.274 12.060 11.392 10.967 10.672 10.456 10.289 10.158 10.051 9.722 9.553 

6 13.745 10.925 9.780 9.148 8.746 8.466 8.260 8.102 7.976 7.874 7.559 7.396 

7 12.246 9.547 8.451 7.847 7.460 7.191 6.993 6.840 6.719 6.620 6.314 6.155 

8 11.259 8.649 7.591 7.006 6.632 6.371 6.178 6.029 5.911 5.814 5.515 5.359 

9 10.561 8.022 6.992 6.422 6.057 5.802 5.613 5.467 5.351 5.257 4.962 4.808 

10 10.044 7.559 6.552 5.994 5.636 5.386 5.200 5.057 4.942 4.849 4.558 4.405 

11 9.646 7.206 6.217 5.668 5.316 5.069 4.886 4.744 4.632 4.539 4.251 4.099 

12 9.330 6.927 5.953 5.412 5.064 4.821 4.640 4.499 4.388 4.296 4.010 3.858 

13 9.074 6.701 5.739 5.205 4.862 4.620 4.441 4.302 4.191 4.100 3.815 3.665 

14 8.862 6.515 5.564 5.035 4.695 4.456 4.278 4.140 4.030 3.939 3.656 3.505 

15 8.683 6.359 5.417 4.893 4.556 4.318 4.142 4.004 3.895 3.805 3.522 3.372 

16 8.531 6.226 5.292 4.773 4.437 4.202 4.026 3.890 3.780 3.691 3.409 3.259 

17 8.400 6.112 5.185 4.669 4.336 4.102 3.927 3.791 3.682 3.593 3.312 3.162 

18 8.285 6.013 5.092 4.579 4.248 4.015 3.841 3.705 3.597 3.508 3.227 3.077 

19 8.185 5.926 5.010 4.500 4.171 3.939 3.765 3.631 3.523 3.434 3.153 3.003 

20 8.096 5.849 4.938 4.431 4.103 3.871 3.699 3.564 3.457 3.368 3.088 2.938 

21 8.017 5.780 4.874 4.369 4.042 3.812 3.640 3.506 3.398 3.310 3.030 2.880 

22 7.945 5.719 4.817 4.313 3.988 3.758 3.587 3.453 3.346 3.258 2.978 2.827 

23 7.881 5.664 4.765 4.264 3.939 3.710 3.539 3.406 3.299 3.211 2.931 2.781 

24 7.823 5.614 4.718 4.218 3.895 3.667 3.496 3.363 3.256 3.168 2.889 2.738 

25 7.770 5.568 4.675 4.177 3.855 3.627 3.457 3.324 3.217 3.129 2.850 2.699 

26 7.721 5.526 4.637 4.140 3.818 3.591 3.421 3.288 3.182 3.094 2.815 2.664 

27 7.677 5.488 4.601 4.106 3.785 3.558 3.388 3.256 3.149 3.062 2.783 2.632 

28 7.636 5.453 4.568 4.074 3.754 3.528 3.358 3.226 3.120 3.032 2.753 2.602 

29 7.598 5.420 4.538 4.045 3.725 3.499 3.330 3.198 3.092 3.005 2.726 2.574 

30 7.562 5.390 4.510 4.018 3.699 3.473 3.304 3.173 3.067 2.979 2.700 2.549 

40 7.314 5.179 4.313 3.828 3.514 3.291 3.124 2.993 2.888 2.801 2.522 2.369 

60 7.077 4.977 4.126 3.649 3.339 3.119 2.953 2.823 2.718 2.632 2.352 2.198 

120 6.851 4.787 3.949 3.480 3.174 2.956 2.792 2.663 2.559 2.472 2.192 2.035 

100K 6.635 4.605 3.782 3.319 3.017 2.802 2.640 2.511 2.408 2.321 2.039 1.878 

K (Multiply this value by 1000) 

F

1%
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F-Table for 0.5% 

Percentage points of the F-distribution: 
upper 0.5% points 

dfnum  

dfden
 

1 2 3 4 5 6 7 8 9 10 15 20 

1 16210.7 19999.5 21614.7 22499.6 23055.8 23437.1 23714.6 23925.6 24091.0 24224.5 24630.2 24836.0 

2 198.50 199.00 199.17 199.25 199.30 199.33 199.36 199.37 199.39 199.40 199.43 199.45 

3 55.552 49.799 47.467 46.195 45.392 44.838 44.434 44.126 43.882 43.686 43.085 42.778 

4 31.333 26.284 24.259 23.155 22.456 21.975 21.622 21.352 21.139 20.967 20.438 20.167 

5 22.785 18.314 16.530 15.556 14.940 14.513 14.200 13.961 13.772 13.618 13.146 12.903 

6 18.635 14.544 12.917 12.028 11.464 11.073 10.786 10.566 10.391 10.250 9.814 9.589 

7 16.236 12.404 10.882 10.050 9.522 9.155 8.885 8.678 8.514 8.380 7.968 7.754 

8 14.688 11.042 9.596 8.805 8.302 7.952 7.694 7.496 7.339 7.211 6.814 6.608 

9 13.614 10.107 8.717 7.956 7.471 7.134 6.885 6.693 6.541 6.417 6.032 5.832 

10 12.826 9.427 8.081 7.343 6.872 6.545 6.302 6.116 5.968 5.847 5.471 5.274 

11 12.226 8.912 7.600 6.881 6.422 6.102 5.865 5.682 5.537 5.418 5.049 4.855 

12 11.754 8.510 7.226 6.521 6.071 5.757 5.525 5.345 5.202 5.085 4.721 4.530 

13 11.374 8.186 6.926 6.233 5.791 5.482 5.253 5.076 4.935 4.820 4.460 4.270 

14 11.060 7.922 6.680 5.998 5.562 5.257 5.031 4.857 4.717 4.603 4.247 4.059 

15 10.798 7.701 6.476 5.803 5.372 5.071 4.847 4.674 4.536 4.424 4.070 3.883 

16 10.575 7.514 6.303 5.638 5.212 4.913 4.692 4.521 4.384 4.272 3.920 3.734 

17 10.384 7.354 6.156 5.497 5.075 4.779 4.559 4.389 4.254 4.142 3.793 3.607 

18 10.218 7.215 6.028 5.375 4.956 4.663 4.445 4.276 4.141 4.030 3.683 3.498 

19 10.073 7.093 5.916 5.268 4.853 4.561 4.345 4.177 4.043 3.933 3.587 3.402 

20 9.944 6.986 5.818 5.174 4.762 4.472 4.257 4.090 3.956 3.847 3.502 3.318 

21 9.830 6.891 5.730 5.091 4.681 4.393 4.179 4.013 3.880 3.771 3.427 3.243 

22 9.727 6.806 5.652 5.017 4.609 4.322 4.109 3.944 3.812 3.703 3.360 3.176 

23 9.635 6.730 5.582 4.950 4.544 4.259 4.047 3.882 3.750 3.642 3.300 3.116 

24 9.551 6.661 5.519 4.890 4.486 4.202 3.991 3.826 3.695 3.587 3.246 3.062 

25 9.475 6.598 5.462 4.835 4.433 4.150 3.939 3.776 3.645 3.537 3.196 3.013 

26 9.406 6.541 5.409 4.785 4.384 4.103 3.893 3.730 3.599 3.492 3.151 2.968 

27 9.342 6.489 5.361 4.740 4.340 4.059 3.850 3.687 3.557 3.450 3.110 2.928 

28 9.284 6.440 5.317 4.698 4.300 4.020 3.811 3.649 3.519 3.412 3.073 2.890 

29 9.230 6.396 5.276 4.659 4.262 3.983 3.775 3.613 3.483 3.377 3.038 2.855 

30 9.180 6.355 5.239 4.623 4.228 3.949 3.742 3.580 3.450 3.344 3.006 2.823 

40 8.828 6.066 4.976 4.374 3.986 3.713 3.509 3.350 3.222 3.117 2.781 2.598 

60 8.495 5.795 4.729 4.140 3.760 3.492 3.291 3.134 3.008 2.904 2.570 2.387 

120 8.179 5.539 4.497 3.921 3.548 3.285 3.087 2.933 2.808 2.705 2.373 2.188 

 7.880 5.299 4.280 3.715 3.350 3.091 2.897 2.745 2.621 2.519 2.187 2.000 

F

0.5%
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F-Table for 0.1% 

Percentage points of the F-distribution: 
upper 0.1% points 

dfnum
 

dfden
 

1 2 3 4 5 6 7 8 9 10 15 20 

1 405.2K 500.0K 540.4K 562.5K3 576.4K 585.9K 592.9K 598.1K 602.3K92 605.6K 615.8K 620.9K 

2 998.50 999.00 999.17 999.25 999.30 999.33 999.36 999.37 999.39 999.40 999.43 999.45 

3 167.03 148.50 141.11 137.10 134.58 132.85 131.58 130.62 129.86 129.25 127.37 126.42 

4 74.137 61.246 56.177 53.436 51.712 50.525 49.658 48.996 48.475 48.053 46.761 46.100 

5 47.181 37.122 33.202 31.085 29.752 28.834 28.163 27.649 27.244 26.917 25.911 25.395 

6 35.507 27.000 23.703 21.924 20.803 20.030 19.463 19.030 18.688 18.411 17.559 17.120 

7 29.245 21.689 18.772 17.198 16.206 15.521 15.019 14.634 14.330 14.083 13.324 12.932 

8 25.415 18.494 15.829 14.392 13.485 12.858 12.398 12.046 11.767 11.540 10.841 10.480 

9 22.857 16.387 13.902 12.560 11.714 11.128 10.698 10.368 10.107 9.894 9.238 8.898 

10 21.040 14.905 12.553 11.283 10.481 9.926 9.517 9.204 8.956 8.754 8.129 7.804 

11 19.687 13.812 11.561 10.346 9.578 9.047 8.655 8.355 8.116 7.922 7.321 7.008 

12 18.643 12.974 10.804 9.633 8.892 8.379 8.001 7.710 7.480 7.292 6.709 6.405 

13 17.815 12.313 10.209 9.073 8.354 7.856 7.489 7.206 6.982 6.799 6.231 5.934 

14 17.143 11.779 9.729 8.622 7.922 7.436 7.077 6.802 6.583 6.404 5.848 5.557 

15 16.587 11.339 9.335 8.253 7.567 7.092 6.741 6.471 6.256 6.081 5.535 5.248 

16 16.120 10.971 9.006 7.944 7.272 6.805 6.460 6.195 5.984 5.812 5.274 4.992 

17 15.722 10.658 8.727 7.683 7.022 6.562 6.223 5.962 5.754 5.584 5.054 4.775 

18 15.379 10.390 8.487 7.459 6.808 6.355 6.021 5.763 5.558 5.390 4.866 4.590 

19 15.081 10.157 8.280 7.265 6.622 6.175 5.845 5.590 5.388 5.222 4.704 4.430 

20 14.819 9.953 8.098 7.096 6.461 6.019 5.692 5.440 5.239 5.075 4.562 4.290 

21 14.587 9.772 7.938 6.947 6.318 5.881 5.557 5.308 5.109 4.946 4.437 4.167 

22 14.380 9.612 7.796 6.814 6.191 5.758 5.438 5.190 4.993 4.832 4.326 4.058 

23 14.195 9.469 7.669 6.696 6.078 5.649 5.331 5.085 4.890 4.730 4.227 3.961 

24 14.028 9.339 7.554 6.589 5.977 5.550 5.235 4.991 4.797 4.638 4.139 3.873 

25 13.877 9.223 7.451 6.493 5.885 5.462 5.148 4.906 4.713 4.555 4.059 3.794 

26 13.739 9.116 7.357 6.406 5.802 5.381 5.070 4.829 4.637 4.480 3.986 3.723 

27 13.613 9.019 7.272 6.326 5.726 5.308 4.998 4.759 4.568 4.412 3.920 3.658 

28 13.498 8.931 7.193 6.253 5.656 5.241 4.933 4.695 4.505 4.349 3.859 3.598 

29 13.391 8.849 7.121 6.186 5.593 5.179 4.873 4.636 4.447 4.292 3.804 3.543 

30 13.293 8.773 7.054 6.125 5.534 5.122 4.817 4.581 4.393 4.239 3.753 3.493 

40 12.609 8.251 6.595 5.698 5.128 4.731 4.436 4.207 4.024 3.874 3.400 3.145 

60 11.973 7.768 6.171 5.307 4.757 4.372 4.086 3.865 3.687 3.541 3.078 2.827 

120 11.380 7.321 5.781 4.947 4.416 4.044 3.767 3.552 3.379 3.237 2.783 2.534 

100K 10.828 6.908 5.422 4.617 4.103 3.743 3.475 3.266 3.098 2.959 2.513 2.266 

K (Multiply entries by 1000 in first row of F values, and last value for df) 
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Factors for Two-Sided Tolerance Limits for Normal Distributions 

Factors K2 such that the probability is γ (gamma) that at least a proportion P 

of the distribution will be included between  2Y K s. 

γ = 0.75 

n P = 0.75 P = 0.90 P = 0.95 P = 0.99 P = 0.999 

2 4.498 6.301 7.414 9.531 11.920 

3 2.501 3.538 4.187 5.431 6.844 

4 2.035 2.892 3.431 4.471 5.657 

5 1.825 2.599 3.088 4.033 5.117 

6 1.704 2.429 2.889 3.779 4.802 

7 1.624 2.318 2.757 3.611 4.593 

8 1.568 2.238 2.663 3.491 4.444 

9 1.525 2.178 2.593 3.400 4.330 

10 1.492 2.131 2.537 3.328 4.241 

11 1.465 2.093 2.493 3.271 4.169 

12 1.443 2.062 2.456 3.223 4.110 

13 1.425 2.036 2.424 3.183 4.059 

14 1.409 2.013 2.398 3.148 4.016 

15 1.395 1.994 2.375 3.118 3.979 

16 1.383 1.977 2.355 3.092 3.946 

17 1.372 1.962 2.337 3.069 3.917 

18 1.363 1.948 2.321 3.048 3.891 

19 1.355 1.936 2.307 3.030 3.867 

20 1.347 1.925 2.294 3.013 3.846 

21 1.340 1.915 2.282 2.998 3.827 

22 1.334 1.906 2.271 2.984 3.809 

23 1.328 1.898 2.261 2.971 3.793 

24 1.322 1.891 2.252 2.959 3.778 

25 1.317 1.883 2.244 2.948 3.764 

26 1.313 1.877 2.236 2.938 3.751 

27 1.309 1.871 2.229 2.929 3.739 

28 1.305 1.865 2.222 2.920 3.728 

29 1.301 1.860 2.216 2.911 3.718 

30 1.297 1.855 2.210 2.904 3.708 

35 1.283 1.834 2.185 2.871 3.667 

40 1.271 1.818 2.166 2.846 3.635 

45 1.262 1.805 2.150 2.826 3.609 

50 1.255 1.794 2.138 2.809 3.588 

75 1.231 1.760 2.098 2.756 3.521 

100 1.218 1.742 2.075 2.727 3.484 

200 1.195 1.709 2.037 2.677 3.419 

500 1.177 1.683 2.006 2.636 3.368 

1000 1.169 1.671 1.992 2.617 3.344 

 1.150 1.645 1.960 2.576 3.291 
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Factors for Two-Sided Tolerance Limits for Normal Distributions 

Factors K2 such that the probability is γ (gamma) that at least a proportion P 

of the distribution will be included between  2Y K s. 

γ = 0.90 

n P = 0.75 P = 0.90 P = 0.95 P = 0.99 P = 0.999 

2 11.407 15.978 18.800 24.167 30.227 

3 4.132 5.847 6.919 8.974 11.309 

4 2.932 4.166 4.943 6.440 8.149 

5 2.454 3.494 4.152 5.423 6.879 

6 2.196 3.131 3.723 4.870 6.188 

7 2.034 2.902 3.452 4.521 5.750 

8 1.921 2.743 3.264 4.278 5.446 

9 1.839 2.626 3.125 4.098 5.220 

10 1.775 2.535 3.018 3.959 5.046 

11 1.724 2.463 2.933 3.849 4.906 

12 1.683 2.404 2.863 3.758 4.792 

13 1.648 2.355 2.805 3.682 4.697 

14 1.619 2.314 2.756 3.618 4.615 

15 1.594 2.278 2.713 3.562 4.545 

16 1.572 2.246 2.676 3.514 4.484 

17 1.552 2.219 2.643 3.471 4.430 

18 1.535 2.194 2.614 3.433 4.382 

19 1.520 2.172 2.588 3.399 4.339 

20 1.506 2.152 2.564 3.368 4.300 

21 1.493 2.135 2.543 3.340 4.264 

22 1.482 2.118 2.524 3.315 4.232 

23 1.471 2.103 2.506 3.292 4.203 

24 1.462 2.089 2.489 3.270 4.176 

25 1.453 2.077 2.474 3.251 4.151 

26 1.444 2.065 2.460 3.232 4.127 

27 1.437 2.054 2.447 3.215 4.106 

28 1.430 2.044 2.435 3.199 4.085 

29 1.423 2.034 2.424 3.184 4.066 

30 1.417 2.025 2.413 3.170 4.049 

35 1.390 1.988 2.368 3.112 3.974 

40 1.370 1.959 2.334 3.066 3.917 

45 1.354 1.935 2.306 3.030 3.871 

50 1.340 1.916 2.284 3.001 3.833 

75 1.298 1.856 2.211 2.906 3.712 

100 1.275 1.822 2.172 2.854 3.646 

200 1.234 1.764 2.102 2.762 3.529 

500 1.201 1.717 2.046 2.689 3.434 

1000 1.185 1.695 2.019 2.654 3.390 

 1.150 1.645 1.960 2.576 3.291 
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Factors for Two-Sided Tolerance Limits for Normal Distributions 

Factors K2 such that the probability is γ (gamma) that at least a proportion P 

of the distribution will be included between  2Y K s. 

γ = 0.95 

n P = 0.75 P = 0.90 P = 0.95 P = 0.99 P = 0.999 

2 22.858 32.019 37.674 48.430 60.573 

3 5.922 8.380 9.916 12.861 16.208 

4 3.779 5.369 6.370 8.299 10.502 

5 3.002 4.275 5.079 6.634 8.415 

6 2.604 3.712 4.414 5.775 7.337 

7 2.361 3.369 4.007 5.248 6.676 

8 2.197 3.136 3.732 4.891 6.226 

9 2.078 2.967 3.532 4.631 5.899 

10 1.987 2.839 3.379 4.433 5.649 

11 1.916 2.737 3.259 4.277 5.452 

12 1.858 2.655 3.162 4.150 5.291 

13 1.810 2.587 3.081 4.044 5.158 

14 1.770 2.529 3.012 3.955 5.045 

15 1.735 2.480 2.954 3.878 4.949 

16 1.705 2.437 2.903 3.812 4.865 

17 1.679 2.400 2.858 3.754 4.791 

18 1.655 2.366 2.819 3.702 4.725 

19 1.635 2.337 2.784 3.656 4.667 

20 1.616 2.310 2.752 3.615 4.614 

21 1.599 2.286 2.723 3.577 4.567 

22 1.584 2.264 2.697 3.543 4.523 

23 1.570 2.244 2.673 3.512 4.484 

24 1.557 2.225 2.651 3.483 4.447 

25 1.545 2.208 2.631 3.457 4.413 

26 1.534 2.193 2.612 3.432 4.382 

27 1.523 2.178 2.595 3.409 4.353 

28 1.514 2.164 2.579 3.388 4.326 

29 1.505 2.152 2.564 3.368 4.301 

30 1.497 2.140 2.549 3.350 4.278 

35 1.462 2.090 2.490 3.272 4.179 

40 1.435 2.052 2.445 3.212 4.103 

45 1.414 2.021 2.408 3.165 4.042 

50 1.396 1.996 2.379 3.126 3.993 

75 1.341 1.917 2.285 3.002 3.835 

100 1.311 1.874 2.233 2.934 3.748 

200 1.258 1.798 2.143 2.816 3.597 

500 1.215 1.737 2.070 2.721 3.475 

1000 1.195 1.709 2.036 2.676 3.418 

 1.150 1.645 1.960 2.576 3.291 
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Factors for Two-Sided Tolerance Limits for Normal Distributions 

Factors K2 such that the probability is γ (gamma) that at least a proportion P 

of the distribution will be included between  2Y K s. 

γ = 0.99 

n P = 0.75 P = 0.90 P = 0.95 P = 0.99 P = 0.999 

2 114.363 160.193 188.491 242.300 303.054 

3 13.378 18.930 22.401 29.055 36.616 

4 6.614 9.398 11.150 14.527 18.383 

5 4.643 6.612 7.855 10.260 13.015 

6 3.743 5.337 6.345 8.301 10.548 

7 3.233 4.613 5.488 7.187 9.142 

8 2.905 4.147 4.936 6.468 8.234 

9 2.677 3.822 4.550 5.966 7.600 

10 2.508 3.582 4.265 5.594 7.129 

11 2.378 3.397 4.045 5.308 6.766 

12 2.274 3.250 3.870 5.079 6.477 

13 2.190 3.130 3.727 4.893 6.240 

14 2.120 3.029 3.608 4.737 6.043 

15 2.060 2.945 3.507 4.605 5.876 

16 2.009 2.872 3.421 4.492 5.732 

17 1.965 2.808 3.345 4.393 5.607 

18 1.926 2.753 3.279 4.307 5.497 

19 1.891 2.703 3.221 4.230 5.399 

20 1.860 2.659 3.168 4.161 5.312 

21 1.833 2.620 3.121 4.100 5.234 

22 1.808 2.584 3.078 4.044 5.163 

23 1.785 2.551 3.040 3.993 5.098 

24 1.764 2.522 3.004 3.947 5.039 

25 1.745 2.494 2.972 3.904 4.985 

26 1.727 2.469 2.941 3.865 4.935 

27 1.711 2.446 2.914 3.828 4.888 

28 1.695 2.424 2.888 3.794 4.845 

29 1.681 2.404 2.864 3.763 4.805 

30 1.668 2.385 2.841 3.733 4.768 

35 1.613 2.306 2.748 3.611 4.611 

40 1.571 2.247 2.677 3.518 4.493 

45 1.539 2.200 2.621 3.444 4.399 

50 1.512 2.162 2.576 3.385 4.323 

75 1.428 2.042 2.433 3.197 4.084 

100 1.383 1.977 2.355 3.096 3.954 

200 1.304 1.865 2.222 2.921 3.731 

500 1.243 1.777 2.117 2.783 3.555 

1000 1.214 1.736 2.068 2.718 3.472 

 1.150 1.645 1.960 2.576 3.291 
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Factors for One-Sided Tolerance Limits for Normal Distributions 

Factors K1 such that the probability is γ (gamma) that at least a proportion P of 

the distribution will be less than + 1Y K s  or greater than − 1Y K s . 

 γ = 0.75 

n P=0.75 P=0.90 P=0.95 P=0.99 P=0.999 

3 1.464 2.501 3.152 4.396 5.805 

4 1.255 2.134 2.681 3.726 4.911 

5 1.152 1.962 2.463 3.421 4.507 

6 1.088 1.859 2.336 3.244 4.273 

7 1.043 1.790 2.250 3.126 4.119 

8 1.010 1.740 2.188 3.042 4.008 

9 0.985 1.701 2.141 2.977 3.924 

10 0.964 1.671 2.104 2.927 3.858 

11 0.947 1.645 2.073 2.885 3.804 

12 0.932 1.624 2.048 2.851 3.760 

13 0.920 1.606 2.026 2.822 3.722 

14 0.909 1.591 2.007 2.797 3.690 

15 0.899 1.577 1.991 2.775 3.661 

16 0.891 1.565 1.976 2.756 3.636 

17 0.883 1.554 1.963 2.739 3.614 

18 0.876 1.545 1.952 2.723 3.595 

19 0.870 1.536 1.941 2.710 3.577 

20 0.864 1.528 1.932 2.697 3.560 

21 0.859 1.521 1.923 2.685 3.546 

22 0.854 1.514 1.915 2.675 3.532 

23 0.849 1.508 1.908 2.665 3.520 

24 0.845 1.502 1.901 2.656 3.508 

25 0.841 1.497 1.895 2.648 3.497 

26 0.838 1.492 1.889 2.640 3.487 

27 0.834 1.487 1.883 2.633 3.478 

28 0.831 1.483 1.878 2.626 3.469 

29 0.828 1.478 1.873 2.620 3.461 

30 0.825 1.475 1.869 2.614 3.454 

35 0.813 1.458 1.849 2.588 3.421 

40 0.803 1.445 1.834 2.568 3.395 

45 0.795 1.434 1.821 2.552 3.375 

50 0.788 1.425 1.811 2.538 3.358 

 0.674 1.282 1.645 2.326 3.090 
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Factors for One-Sided Tolerance Limits for Normal Distributions 

Factors K1 such that the probability is γ (gamma) that at least a proportion P of 

the distribution will be less than + 1Y K s  or greater than − 1Y K s  

 γ = 0.90 

n P=0.75 P=0.90 P=0.95 P=0.99 P=0.999 

3 2.603 4.258 5.311 7.340 9.651 

4 1.972 3.188 3.957 5.438 7.129 

5 1.698 2.742 3.400 4.666 6.111 

6 1.540 2.494 3.092 4.243 5.556 

7 1.435 2.333 2.894 3.972 5.202 

8 1.360 2.219 2.754 3.783 4.955 

9 1.302 2.133 2.650 3.641 4.771 

10 1.257 2.066 2.568 3.532 4.629 

11 1.219 2.011 2.503 3.443 4.514 

12 1.188 1.966 2.448 3.371 4.420 

13 1.162 1.928 2.402 3.309 4.341 

14 1.139 1.895 2.363 3.257 4.273 

15 1.119 1.867 2.329 3.212 4.215 

16 1.101 1.842 2.299 3.172 4.164 

17 1.085 1.819 2.272 3.137 4.119 

18 1.071 1.800 2.249 3.105 4.078 

19 1.058 1.782 2.227 3.077 4.042 

20 1.046 1.765 2.208 3.052 4.009 

21 1.035 1.750 2.190 3.028 3.979 

22 1.025 1.737 2.174 3.007 3.952 

23 1.016 1.724 2.159 2.987 3.927 

24 1.007 1.712 2.145 2.969 3.903 

25 1.000 1.702 2.132 2.952 3.882 

26 0.992 1.691 2.120 2.937 3.862 

27 0.985 1.682 2.109 2.922 3.843 

28 0.979 1.673 2.099 2.909 3.826 

29 0.973 1.665 2.089 2.896 3.810 

30 0.967 1.657 2.080 2.884 3.794 

35 0.942 1.624 2.041 2.833 3.730 

40 0.923 1.598 2.010 2.793 3.679 

45 0.907 1.577 1.986 2.761 3.638 

50 0.894 1.559 1.965 2.735 3.604 

 0.674 1.282 1.645 2.326 3.090 
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Factors for One-Sided Tolerance Limits for Normal Distributions 

Factors K1 such that the probability is γ (gamma) that at least a proportion P of 

the distribution will be less than + 1Y K s  or greater than − 1Y K s  

 γ = 0.95 

n P=0.75 P=0.90 P=0.95 P=0.99 P=0.999 

3 3.806 6.155 7.656 10.553 13.857 

4 2.618 4.162 5.144 7.042 9.214 

5 2.150 3.407 4.203 5.741 7.502 

6 1.895 3.006 3.708 5.062 6.612 

7 1.732 2.755 3.399 4.642 6.063 

8 1.618 2.582 3.187 4.354 5.688 

9 1.532 2.454 3.031 4.143 5.413 

10 1.465 2.355 2.911 3.981 5.203 

11 1.411 2.275 2.815 3.852 5.036 

12 1.366 2.210 2.736 3.747 4.900 

13 1.328 2.155 2.671 3.659 4.787 

14 1.296 2.109 2.614 3.585 4.690 

15 1.268 2.068 2.566 3.520 4.607 

16 1.243 2.033 2.524 3.464 4.535 

17 1.220 2.002 2.486 3.414 4.471 

18 1.201 1.974 2.453 3.370 4.415 

19 1.183 1.949 2.423 3.331 4.364 

20 1.166 1.926 2.396 3.295 4.318 

21 1.152 1.905 2.371 3.263 4.277 

22 1.138 1.886 2.349 3.233 4.239 

23 1.125 1.869 2.328 3.206 4.204 

24 1.114 1.853 2.309 3.181 4.172 

25 1.103 1.838 2.292 3.158 4.142 

26 1.093 1.824 2.275 3.136 4.115 

27 1.083 1.811 2.260 3.117 4.089 

28 1.075 1.799 2.246 3.098 4.066 

29 1.066 1.788 2.232 3.080 4.043 

30 1.058 1.777 2.220 3.064 4.022 

35 1.025 1.732 2.167 2.995 3.934 

40 0.999 1.697 2.126 2.941 3.866 

45 0.978 1.669 2.092 2.898 3.811 

50 0.960 1.646 2.065 2.862 3.766 

 0.674 1.282 1.645 2.326 3.090 
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Factors for One-Sided Tolerance Limits for Normal Distributions 

Factors K1 such that the probability is γ (gamma) that at least a proportion P of 

the distribution will be less than + 1Y K s  or greater than − 1Y K s  

 γ = 0.99 

n P=0.75 P=0.90 P=0.95 P=0.99 P=0.999 

6 2.848 4.411 5.406 7.335 9.550 

7 2.491 3.859 4.728 6.412 8.346 

8 2.253 3.497 4.285 5.812 7.564 

9 2.083 3.241 3.972 5.389 7.015 

10 1.954 3.048 3.738 5.074 6.606 

11 1.853 2.898 3.556 4.829 6.288 

12 1.771 2.777 3.410 4.633 6.035 

13 1.703 2.677 3.290 4.472 5.827 

14 1.645 2.593 3.189 4.337 5.652 

15 1.595 2.522 3.102 4.222 5.504 

16 1.552 2.459 3.028 4.123 5.377 

17 1.514 2.405 2.963 4.037 5.265 

18 1.481 2.357 2.905 3.960 5.167 

19 1.450 2.314 2.854 3.892 5.080 

20 1.423 2.276 2.808 3.832 5.001 

21 1.399 2.241 2.766 3.777 4.931 

22 1.376 2.209 2.729 3.727 4.867 

23 1.355 2.180 2.694 3.681 4.808 

24 1.336 2.154 2.662 3.640 4.755 

25 1.319 2.129 2.633 3.601 4.706 

26 1.303 2.106 2.606 3.566 4.660 

27 1.287 2.085 2.581 3.533 4.618 

28 1.273 2.066 2.558 3.502 4.579 

29 1.260 2.047 2.536 3.473 4.542 

30 1.247 2.030 2.516 3.447 4.508 

35 1.195 1.957 2.430 3.334 4.564 

40 1.154 1.902 2.364 3.249 4.255 

45 1.121 1.857 2.312 3.180 4.168 

50 1.094 1.821 2.269 3.125 4.096 

 0.674 1.282 1.645 2.326 3.090 
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Distribution-Free Two-Sided Tolerance Limits,  = 0.75 & 0.90 

Values (r, s) such that we may assert with at least γ (gamma) confidence that 100P percent of the 
population lies between the rth smallest and the sth largest of a random sample of n. 

  = 0.75  = 0.90 

n \ P 0.75 0.90 0.95 0.99 0.75 0.90 0.95 0.99 

50 5, 5 2,1   5,4 1,1   

55 6, 6 2,2 1,1  5,5 2,1   

60 7,6 2,2 1,1  6,5 2,1   

65 7,7 3,2 1,1  6,6 2,2   

70 8,7 3,2 1,1  7,6 2,2   

75 8,8 3,3 1,1  7,7 2,2   

80 8,8 3,3 2,1  8,7 3,2 1,1  

85 10,9 4,3 2,1  8,8 3,2 1,1  

90 10,10 4,3 2,1  9,8 3,2 1,1  

95 11,10 4,3 2,1  9,9 3,3 1,1  

100 11,11 4,4 2,1  10,10 3,3 1,1  

110 12,12 5,4 2,2  11,11 4,3 2,1  

120 14,13 5,5 2,2  12,12 4,4 2,1  

130 15,14 6,5 3,2  13,13 5,4 2,1  

140 16,15 6,6 3,2  14,14 5,5 2,2  

150 17,17 6,6 3,3  16,15 5,5 2,2  

170 20,19 7,7 4,3  18,17 6,6 3,2  

200 23,23 9,8 4,4  21,21 8,7 3,3  

300 35,35 13,13 6,6 1,1 33,32 12,11 5,5  

400 47,47 18,18 9,8 2,1 45,44 16,16 8,7 1,1 

500 59,59 23,22 11,11 2,1 57,56 21,20 10,9 1,1 

600 72,71 28,27 13,13 2,2 68,68 26,25 12,11 2,1 

700 84,83 33,32 16,15 3,2 80,80 30,30 14,14 2,2 

800 96,96 37,37 18,18 3,3 92,92 35,34 16,16 3,2 

900 108,108 42,42 21,20 4,3 104,104 40,39 19,18 3,2 

1000 121, 120 47,47 23,22 4,4 117,116 44,44 21,20 3,3 

When the values of r and s are not equal they are interchangeable. 
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Distribution-Free Two-Sided Tolerance Limits,  = 0.95 & 0.99 

Values (r, s) such that we may assert with at least γ (gamma) confidence that 100P percent of the 
population lies between the rth smallest and the sth largest of a random sample of n. 

  = 0.95  = 0.99 

n \ P 0.75 0.90 0.95 0.99 0.75 0.90 0.95 0.99 

50 4, 4 1,1   3, 3    

55 5, 4 1,1   4,3    

60 5,5 1,1   4,4    

65 6,5 2,1   5,4 1,1   

70 6,6 2,1   5,5 1,1   

75 7,6 2,1   5,5 1,1   

80 7,7 2,2   6,5 1,1   

85 8,7 2,2   6,6 2,1   

90 8,8 3,2   7,6 2,1   

95 9,8 3,2 1,1  7,7 2,1   

100 9,9 3,2 1,1  8,7 2,2   

110 10,10 3,3 1,1  9,8 2,2   

120 11,11 4,3 1,1  10,9 3,2   

130 13,12 4,4 2,1  11,10 3,3 1,1  

140 14,13 4,4 2,1  12,11 3,3 1,1  

150 15,14 5,4 2,1  13,13 4,3 1,1  

170 17,16 6,5 2,2  15,15 5,4 2,1  

200 20,20 7,6 3,2  18,18 6,5 2,2  

300 32,31 11,11 5,4  29,29 10,9 4,3  

400 43,43 15,15 7,6  40,40 14,13 6,5  

500 55,54 20,19 9,8 1,1 52,51 18,17 7,7  

600 67,66 24,24 11,10 1,1 63,63 22,22 9,9  

700 78,78 29,28 13,13 2,1 75,74 26,26 11,11 1,1 

800 90,90 33,33 15,15 2,2 86,86 31,30 13,13 1,1 

900 102,102 38,37 18,17 2,2 98,97 35,35 15,15 2,1 

1000 114, 114 43,42 20,19 3,2 110, 109 40,39 18,17 2,1 

When the values of r and s are not equal they are interchangeable. 
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Distribution-Free One-Sided Tolerance Limits 

Values (m) such that with at least γ (gamma) confidence that 100P percent of the population lies below the 
mth largest (or above the mth smallest) of a random sample of n. 

  = 0.75  = 0.90  = 0.95  = 0.99 

n\P 0.75 0.90 0.95 0.99 0.75 0.90 0.95 0.99 0.75 0.90 0.95 0.99 0.75 0.90 0.95 0.99 

50 10 3 1  9 2 1  8 2   6 1   

55 12 4 2  10 3 1  9 2   7 1   

60 13 4 2  11 3 1  10 2 1  8 1   

65 14 5 2  12 4 1  11 3 1  9 2   

70 15 5 2  13 4 1  12 3 1  10 2   

75 16 6 2  14 4 1  13 3 1  10 2   

80 17 6 3  15 5 2  14 4 1  11 2   

85 19 7 2  16 5 2  15 4 1  12 3   

90 20 7 2  17 5 2  16 5 1  13 3 1  

95 21 7 2  18 6 2  17 5 2  14 3 1  

100 22 8 2  20 6 2  18 5 2  15 4 1  

110 24 9 4  22 7 3  20 6 2  17 4 1  

120 27 10 4  24 8 3  22 7 2  19 5 1  

130 29 11 5  26 9 3  25 8 3  21 6 2  

140 31 12 5 1 28 10 4  27 8 3  23 6 2  

150 34 12 6 1 31 10 4  29 9 3  26 7 2  

170 39 14 7 1 35 12 5  33 11 4  30 9 3  

200 46 17 8 1 42 15 6  40 13 5  36 11 4  

300 70 26 12 2 65 23 10 1 63 22 9 1 58 19 7  

400 94 36 17 3 89 32 15 2 86 30 13 1 80 27 11  

500 118 45 22 3 113 41 19 2 109 39 17 2 103 35 14 1 

600 143 55 26 4 136 51 23 3 133 48 21 2 126 44 18 1 

700 167 65 31 5 160 60 28 4 156 57 26 3 149 52 22 2 

800 192 74 36 6 184 69 32 5 180 66 30 4 172 61 26 2 

900 216 84 41 7 208 79 37 5 204 75 35 4 195 70 30 3 

1000 241 94 45 8 233 88 41 6 228 85 39 5 219 79 35 3 

 


