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Development of a chemical process
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Ideal Synthetic Route
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 Minimum number of steps
 Fast and easy
 Reagents commercially available and cheap
 High yields
 Minimum amount of by-products
 Minimum amount of waste
 Minimum quantity of solvents 
 Not expensive
 Robust and Reproducible
 Low risk of failure
 No scale up issues
 No chromatographic purifications
 High purity of the final product
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Statistical methods
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Some statistical tools (PCA, PLS and DoE) can be applied 
to each step of the development of the chemical route

Advantages:
 Lower number of reactions
 Less time, especially if combined with parallel equipment
 Better understanding of the chemical process
 Higher precision in the determination of optimal values 
 Knowledge of the critical process parameters
 Determination of the interactions among studied parameters
 Evaluation of the robustness of the process
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Application of Statistical Tools to Chemistry
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Optimization RobustnessScreening

Understanding Confidence

PCA-PLS: identify best 
Solvent/base/reagent 

combination

DoE Optimization: increase 
yield and reduce impurity 

formation

DoE Robustness: 
increase confidence of 

the process

Verification in 
Pilot Plant
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Resistance to statistical tools
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Despite these advantages, a high resistance to use 
statistical tools is encountered

Main reasons:
 We don’t have enough time to do it
 We can understand everything with a reduced number of 

reactions
 I can change one parameter at time and optimize the reaction
 We don’t need process understanding: if it works in lab, it will 

work in the pilot plant
 I’m a chemist, not a statistic
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Case study
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 A case study will be presented where the DoE was applied 
successfully to a chemical reaction

 The reaction was previously tried in lab
 Some “a priori” considerations were applied to the chemistry
 No systematic study carried out
 Process understanding needed to reduce impurity formation
 Reproducibility and robustness not tested
 Used parallel equipment to reduce time
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De-bromination via catalytic transfer 
hydrogenation (CTH)
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 Catalyst: Pd/C 5% (0.3wt/wt)

 Hydrogen donor: formic acid (2eq)

 Solvent: 2-propanol

 Temperature: reflux (ca.82C)

 Conversion: ca. 95%a/a after 3hrs
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Main Issues
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Formation of 3 main impurities

 Dimer= ca.0.5% 

 Formyl= ca.2% after 3hrs, ca.4% after 6hrs

 Tetrahydro= ca.2% after 3hrs, ca.6% after 6hrs

 Total Imps= ca.5% after 3hrs

 All impurities (except for the formyl) can react in the following 
step interfering with the precipitation of the API

 Final API obtained contaminated with the wrong crystalline 
form
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Initial information

9

 High quantity of formic acid used to generate the required amount 
of hydrogen

 High quantity of catalyst needed to obtain a good conversion 
 High amount of formyl imp can be reduced by using a high 

amount of catalyst 
 High temperature to increase reaction rate
 Reaction must be stopped after 3hrs to reduce impurity formation 

and degradation of final product
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DoE on the CTH
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A DoE was carried out to define better reaction conditions and increase robustness

 Objectives: 
1. Increase the yield up to 97%
2. Reduce each impurity below 0.5% (Formyl<1%)

Four factors considered 
1. Quantity of catalyst
2. Quantity of formic acid
3. Temperature
4. Concentration

A yellow Fractional Factorial Design was selected to identify main factors and 
interactions when not aliased

Ten reactions were carried out using parallel equipment (1block, two center points)
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Yield
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Design-Expert® Software
Yield

Error estimates

Shapiro-Wilk test
W-value = 0.957
p-value = 0.759
A: Catalyst
B: Formic acid
C: Temp
D: IPA

Positive Effects 
Negative Effects 
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B: Formic acid (eq)Response range between 81.7 and 98.6% 
Factors affecting the yield:
A) Catalyst
B) Formic acid
AB) Interaction Pd-HCOOH
High conversions: low quantities of formic acid and high quantities of catalyst
Effect of the catalyst highly reduced when using a low quantity of acid
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Tetrahydro and Dimer Impurities
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Tetrahydro (range from 0 to 2.2%)
A) Catalyst
AB) Interaction Pd-HCOOH 
B) Quantity of formic acid

Dimer (range from 0.02 to 0.33%: 
A) Catalyst

Design-Expert® Software
Factor Coding: Actual
Original Scale
Tetrahydro (%)

Design Points
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X2 = B: Formic acid

Actual Factors
C: Temp = 75
D: IPA = 7.5
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Formyl Impurity
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Response range between 0.19 and 6.9% 
Factors affecting the formation of the Formyl Impurity:

A) Catalyst
B) Formic acid
AB) Interaction Pd-HCOOH

Design-Expert® Software
Logit(Formyl)

Error estimates

Shapiro-Wilk test
W-value = 0.730
p-value = 0.025
A: Catalyst
B: Formic acid
C: Temp
D: IPA

Positive Effects 
Negative Effects 
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DoE results: Summary
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 A strong interaction between formic acid 
and catalyst was highlighted

 The quantity of formic acid was reduced 
improving the impurity profile, but without 
affecting the yield

 Thanks to the interaction, expensive 
Palladium was reduced 

 Solvent didn’t affect the responses, so 
was reduced, increasing the capacity of 
the reactor
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Robustness
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 New conditions were moved towards a more 
robust region

 Pd reduced from 0.3 to 0.15wt/wt

 Formic acid from 2 to 1.2eq

 New conditions tested on a small scale in 
lab

 Results after 2.5hrs:

o Yield=98.9%

o Tetrahydro imp=n.d.

o Dimer=0.06%a/a

o Formyl imp=0.3%a/a
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Reaction and impurity kinetic
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 Reaction fast: almost complete conversion after 1hr

 Reaction stable with time

 No formation of the two impurities after 2.5hrs (effect of reduced formic acid)
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Reaction scale up
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 Reaction tested in the JLR (kilo-labo) giving very good results

 Scale up in the Pilot Plant Verona

 Obtained 11.3kg of solid product

 Yield= ca.75% including crystallization

 Assay= 99.75%a/a

 Product used to test following steps

 Final API obtained with good assay (99.2%w/w) and suitable solid form

 No major issues observed
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Conclusions
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The DoE was applied successfully to a chemical reaction, reaching the following 
targets:

 Process understanding

 Interactions between parameters identified 

 Yield increased

 Impurities reduced

 Expensive catalyst loading reduced

 Robust region identified

 Ca. 1 week work 

 Reaction moved to Pilot Plant obtaining expected results




