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ABSTRACT

True replication in a designed experiment permits calculation of a pure error mean square which
is used to check model goodness-of-fit (Draper and Smith, 1981). In two level factorial and fractional
factorial designs, replication usually is done for center points, for full replicates of the design or, less
frequently, for a balanced partial replicate of the factorial points. Typically the number of pure error
degrees of freedom is not large. Note that pure error is not restricted to completely randomized
designs, but is defined as the usual error from any variance reducing design. These designs include
completely randomized designs, randomized block designs, incomplete block designs, Latin squares,
etc. (Box and Draper, 1987).

Standard analysis of two level factorial and fractional factorial designs uses Daniel's normal or
half normal probability plot of effects (Daniel, 1976, Box, Hunter and Hunter, 1978). We propose
augmenting the usual probability plot of effects with points representing pure error. ~Assuming true
replication, pure error points are guaranteed to be true null effects.

Details of the pure error representation on normal probability plots will be presented. For
completely randomized designs, with each replicated point run exactly twice, single degree of freedom
pure error effects are straightforward to add to the plot. For other designs and when any point is
replicated more than twice, there are equivalent choices for representing pure error effects. We
choose to represent pure error by plotting expected order statistics associated with pure error effects
versus the usual normal expected order statistics. The number of pure error points added to the plot
equals the number of degrees of freedom for pure error.

Examples will be given illustrating how pure error representation aids interpretation of the
normal probability plot. Specific advantages of pure error representation include: ‘

(@ combining pure error and null effects information about experimental error on the same
normal probability plot,

(b) finding small non-null effects, and

(¢) clarifying null effect experiments.

Calibration of normal probability plots, both with and without pure error, will also be discussed.

TEXT

True replication in a designed experiment permits calculation of the pure error mean square
which can formally be used to check model goodness-of-fit (Draper and Smith, 1981). It is, of course,
important that the replication be true replication, not simply remeasurement. That is, replicate



experimental runs should be set up completely from scratch with the same values for the design
variables and all steps of the experimental process should be redone. Failure to do true replication -
typically results in underestimating the experimental error. Tests based on such underestimates may
cause the scientist to believe a statistical model that is more complex than necessary is required. The
use of unnecessarily complex models obscures the relation of the response to the design variables and
inflates the prediction variances based on the model.

We will use the following notation:

Y  response variable, random
X; design variables, fixed, j=1,...,p
e chance error, random

For each of n cases we relate Y to the X;'s and e through an additive model:
Yi = f(Xil""’Xip) + € i=1,...,n

For inference purposes, the chance errors are usually assumed to follow a normal distribution
with mean zero and constant variance, 2, independent of the Xj's.

The pure error mean square is defined by grouping cases with identical (or perhaps close) values
of the design variables and calculating the usual one-way analysis of variance error mean square for
the responses based on the grouping. Specifically, suppose there are k distinct patterns of values for
the design variables and n, = number of cases having distinct pattern g. The pure error is the
one-way ANOVA within groups mean square, defined by:

LI(Y - Y’
MS(Pure Error) = —8M8 ——
(ng - 1)

where Y, is the group mean corresponding to the group to which each case belongs. The degrees of
freedom Yor pure error are E(ng -1)=n-k.

To check for lack-of-fit for a particular model, the residual sum of squares is partitioned into two
parts:

Residual SS = Lack-of-Fit SS + Pure Error SS

with the lack-of-fit sum of squares defined as the difference between the model residual sum of
squares and the pure error sum of squares. Note that the pure error sum of squares is a lower bound
for the residual sum of squares, since each model must give the same fitted value for all cases with
identical values of the design variables. Assuming the degrees of freedom for residuals is greater than
the degrees of freedom for pure error, a lack-of-fit F test may be constructed as:

F = (Ssresiduals - Sspure error)’ (dfresiduals - dfpure error)
(SS

pure error / dfpure error)

In two level factorial and fractional factorial designs, replication is usually done for center
points, for full replicates of the design or, less frequently, for a balanced partial replicate of the
factorial points. Typically the number of pure error degrees of freedom is not large. The small
number of denominator degrees of freedom for the lack-of-fit F test can cause difficulty since the
denominator Mean Square will not be well estimated. Although the critical values for the F test
account for this, we feel it is crucial for the scientist to examine the Pure Error Mean Square to judge
if it is larger or smaller (particularly smaller) than might be reasonably expected. Unusually small



Pure Error Mean Squares (perhaps arising from remeasurement) may explain spurious large F values
for lack-of-fit.

Note that the pure error is not restricted to completely randomized designs, but can be defined
as the usual experimental error estimate from any variance reducing design (Box and Draper, 1987).
Thus if a randomized blocks design were used to replicate a 23 factorial, the skeleton ANOVA would
look like:

Source
blocks
A
B
C
AB
AC
BC
ABC
error

o,
QIJF‘HFJF'HFJFJH

The randomized blocks error term with 7 df can be treated as pure error in constructing
lack-of-fit tests for any particular model for the 2* factorial. This principle applies to any variance
reducing design, including incomplete blocks, Latin Squares, etc.

Standard analysis of unreplicated orthogonal two level factorial and fractional factorial designs
uses Daniel's normal and/or half normal probability plot of effects (Daniel, 1976, Box, Hunter and
Hunter 1978). This technique may be extended to non-orthogonal designs by plotting standardized
effects in place of the estimated effects (Design-Ease® manual, 1990). The standardization procedure
divides each effect by a factor that is proportional to the standard error of the effect. (Note that a plot
could be constructed directly from the t values for each effect.) Daniel proposed plotting the ordered
two level effects versus the expected ordered statistics from a unit normal random sample of the same
sample size as the number of effects. Outliers on this plot are identified as true effects for the
purposes of statistical analysis. The basic underlying assumption is that the small or null effects may
be used to estimate experimental error.

Potential difficulties with this method are many, but it has proven to work well in real world
situations. In particular it allows the scientist to focus on important large effects. If the experiment
has pure error degrees of freedom, the scientist can check the lack-of-fit of the model containing the
identified effects. We advocate going one step further and incorporating the pure error information
directly on the normal probability plot. If few or none of the effects are null, this method permits
graphical identification of effects which would not be apparent from the normal probability plot of the
factor effects alone.

The steps to incorporate the pure error information directly on the normal probability plot are:

(@) determine the usual effects and plot them on the normal probability plot.
(b) determine the pure error mean square and degrees of freedom.
(©) determine the standard error formula for the usual effects, for an orthoganal 2k:

2

40
SE = —_—
n

(d) plot on the normal probability plot points representing pure error. The number of points
plotted equals the number of degrees of freedom for pure error. The pure error effects



will be the expected values from a normal random sample with standard deviation (950
standardized in the same manner as the factor effects. In the orthogonal case, this will be

4 (Mspure error)

O'Pe=
n

To see how the augmented plot is constructed, we will use the following example of a replicated
(in blocks) 28 factorial:

A B C Blockl Block2
- - - 89 112
+ - - 61 97
- + - 70 108
+ + - 78 113
- - + 64 87
+ - + 88 112
- + + 95 112
+ + + 156 172
The computed effects are:
Standardized
Variable Coefficient Effect
A 8.750 17.50
B 12.125 24.25
C 9.875 19.75
AB 8.000 16.00
AC 12.500 25.00
BC 10.875 21.75
ABC 1.000 2.00

The normal probability plot of effects:

DESIGN-EASE Analysis
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Effect



Based on this plot it looks like there is an ABC effect. But let's incorporate the pure error
information on the normal probability plot. The sum of squares pure error is 263.00 with 7 degrees of
freedom. The mean square pure error (263/7 = 37.57) estimates 02. Note that standard error for

each effect is:
402 4(37.57)
SE = |— = —— = 3.06
n 16

The pure error effects are the expected order statistics for a random sample of size 7 from a normal
population with a mean of zero and a standard deviation of: ’

4 (MSpure error) 4(37.57)
Ope = = - = 3.06
n 16

The 7 pure error effects (effect; = z;0,.) are treated as a sample in their own right:

i Pi Zi effecti
1 7.14 -1.465 -4.492
2 21.43 -0.792 -2.426
3 35.71 -0.366 -1.122
4 50.00 0.000 0.000
5 64.29 0.366 1.122
6 78.57 0.792 2.426
7 92.86 1.465 4.492

Normal probability plot, augmented with pure error effects:

DESIGN-EASE Analysis
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Clearly there are 6 large effects. Indeed, ABC is the only null effect. All the other effects are
large and approximately the same size.



Example 2: A B C Blockl Block2 Effects
- - - 134 130 A -40.37
+ - - 75 76 . B 40,12
-+ - 115 119 C -28.38
+ o+ - 132 116 AB 32,37
- - + 95 98 AC -15.63
+ -+ 1 4 8C 23.38
-+ o+ 131 123 ABC  0.625
+ + + 104 104
DESIGN-EASE Analysis DESIGN-EASE Analysis
99 99
95+ 95 .
. s0- E 901 8
3 a0l 80 ] +
g 70 g 70 e AR
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3 so- < 30 “ac
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§ 10 g w{ |
5 5 A
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—40.37 -20.96 -13.64 -0.13 13.29 20.71 40.12 -40.37 -28.96 —13.54 -013 13.29 26.71 40.12
Effect Effect

Based on the normal probability plot of the effects we might conclude all the effects are null.
Augmenting the plot with the pure error effects clearly indicates 6 large effects. As in the previous
example, ABC is the only null effect.

Example 3: A B C Blockl Block2 Effects
- - - 108 93 A - 6.00
+ - - 108 125 8 -12.25
- + - 14 120 C -6.25
+ + - 72 68 AB -17.00
- - + 96 97 AC 9.50
+ - + 124 81 BC 2.75
- + + 93 86 ABC  14.50
+ + + 82 99
DESIGN-EASE Analysis DESIGN-EASE Analysis
991 99
95 95
> 90 >
[ X 90
J el
g 70 § :::
§ 50 g o
30 30
o 10 O 10
-4 5 -3 5]
14 1
-17.00 -1.76 -8.60 -1.26 4.00 9.26 14.60 17.00 -N.75 -B8.60 -125 4.00 9.26 14.50
Effect Effect

Both the normal and augmented normal probability plots show only null effects.



Some statistical packages offer calibration of normal probability plots (Devore and Peck, 1986).
The basic idea is to calculate the correlation coefficient (r) for the normal plot (the correlation between
the order statistics and the effects) and compare it to what might be expected under the null hypothesis
that the sample is from a normal population. A small value of r indicates nonnormality. The addition
of the augmented points from the pure error complicates this calibration somewhat. To see what the
effect of augmentation is, we calculated the distribution of r for null plots with and without pure error
effects. To illustrate, we used a 22 factorial in 2 blocks of size 8, i.e. 7 factor effects and 7 pure error
effects. 99,999 plots were simulated to determine a critical value (@ = 5%) of r. The critical value
for factor effects only is r = 0.8976. Critical r for factor and pure error effects is r = 0.8776.

To see the power of the normal probability plot, we calculated the distribution of r when one
factor had a true effect of A o's (o is the true pure error) for various values of A. We ran 10,000
simulations for each A value and compared the r values to the critical value found above. Calculating
the percentage of r values less than the critical value gives an estimate of the power of each respective
plot:

Power of the Power of the
A factors only plot  augmented plot
0.0 4.97% 5.03%
1.0 8.28% 10.06%
2.0 34.95% 54.92%
3.0 73.47% 96.99%
4.0 94.35% 99.98%
CONCLUSION

Incorporating pure error information in the form of pure error effects on the normal probability
plot enhances the utility of these plots for selecting factor effects. If few or none of the effects are
null, this method permits graphical identification of effects which would not be apparent from the
normal probability plot of the factor effects alone. The pure error effects are a particularly useful aid
for the novice in identifying which of the factor effects are null. The addition of the pure error effects
to the normal probability plot also triggers requests for help. When the novice observes that the pure
error effects don't coincide with what they think the null effects are, they ask why. In our experience
this has prevented several invalid interpretations from occurring. In addition, the pure error effects
improve the power of normal probability plots for detecting real factor effects.
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