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True replication in a designed experiment
permits calculation of a pure error mean square that is
used to check model lack-of-fit. In 2-level factorial and
fractional factorial designs. replication is usually done
for center points. although other replication patterns
may be useful. The number of replication points are
often small (hence the term. —almost unreplicated
factorial™) and the usual analysis to determine important
effects typically ignores these points. For instance.
half-normal and normal probability plots display only
the effect estimates. without any graphical
representation to account for replicate observations. A
valuable contribution of Lenth (1989) provides a
numerical method for selecting important effects from
unreplicated factorials. As the purpose of Lenth's
paper was to provide a method for analyzing
unreplicated factorials, he made no provision to take
advantage of replication.

In this paper, we propose supplementing
Lenth's method by combining his estimate of error
variance from small factorial etfects with the pure error
variance from replicate observations or (possibly) other
estimates of error variance. We demonstrate that there
can be a substantial increase in power to detect effects
by incorporating this additional information. In
fractional factorials, this increase in power is
particularly valuable.

We also propose augmenting half-normal or
full normal probability plots of effects by adding points
that represent error effects estimated from the replicate
observations and (possibly) other estimates of the error
variance. As these points are truly error. they provide
a set of points on the plots to judge the potential
importance of all effects. The number of extra points
added equals the number of degrees of freedom
associated with the within sum of squares for the
replicate observations.

~ Section 1 reviews Lenth’s method. [n Section
2 we extend Lenth’s method to take advantage of error
variance information from replicate observations.
Section 3 presents an example from Montgomery
{1997) that illustrates how inferences may change based
on more complete information. Simulation resuits are
given in Section 4 that quantify the gain in power from

using the addition information. Section 5 presents our
extension of the half-normal and full-normal probability
plots to include information from replicate
observations. The final section summarizes our
findings.

1. Lenth’s Method

Lenth (1989) gave a clever numerical method
for analyzing unreplicated factorial designs. As he
noted, the Daniel’s (1959) graphical method using half-
normal and full-normal probability plotting depends on
effect sparsity. Effect sparsity means that the number of
nonzero or active effects among the contrasts in an
unreplicated factorial or fractional factorial experiment
is expected to be small. Assuming there are few active
effects, the active effects show up as outliers on the
probability plot. Of course, what exactly constitutes an
“outlier™ is somewhat subjective. (It is important to
note here that interpretation of what effects to consider
as “real” depends on understanding the substantive
aspects of the problem, i.e., as with all analyses subject
matter knowledge and expectation must be incorporated
into any data analysis!)

We present Lenth’s method using his notation.
Suppose we have m contrasts of interest. Let x,, K.. ....
K,, denote the true contrast values. Let ¢, ¢, ..., ¢,
denote the corresponding contrast estimates. The key
to the probability plots is that the contrast estimates are
independent normal variates having the same variance.
but possibly unequal means, x,, K., ..., K,. (We note
that unequal variances can be easily handled by
standardizing the contrast estimates and also that the
plots work well even if the contrast estimates depart
moderately from independence.) Note that effect-
sparsity means that “most™ of the x, are in fact zero.

Lenth denotes the common variance of the
contrasts as 1. The essence of his method is to
estimate t° from the smallest (in absolute value)
contrast estimates. Let

5= 1.5 x median { |c} }.
and

PSE = 1.5 x median { |c| : lél < 2.5 54}



The PSE is 1.5 times the median of all the smaller
contrasts. where smaller contrasts are defined as those
with absolute values less than 2.5 times 1.5 times the
median of the absolute values of all contrasts. Lenth
shows that PSE is a “fairly good estimate of T when the
effects are sparse.” .

Once Lenth has his estimate of the standard
error for a contrast. he proceeds to form individual and
simultaneous confidence bounds for them. The margin
of error is defined using t confidence limits with
reduced degrees of freedom.

ME =1,-., * PSE.

The reduced degrees of freedom is taken to d = m/3.
For simultaneous confidence limits. Lenth suggests
using simultaneous margin of error.

SME =1,, * PSE.
The percent point of the 7 distribution used is
y=(1+.95"):2,

which is exact since the contrast estimates are
independent.

Lenth suggests constructing a bar plot of
contrast estimates with reference lines at + ME and at
= SME. He says. "A contrast whose bar extends
bevond the SME lines is clearly active, one which does
not extend beyond the ME lines cannot be deemed
active. and one in between is in a zone of uncertainty
where a good argument can be made both for its being
active and for its being a happenstance result of an
inactive contrast.” We would add that estimated
contrasts in this middle zone require substantive
knowledge of the problem to evaluate appropriately.

2. Extension of Lenth’s Method

Now we consider the case with replication.
For instance, in a typical 2-level fractional factorial it is
good practice to replicate some point or points. Often
the center point is included in the design to provide an
estimate of curvature. The center point is frequently
replicated several times to provide a more stable
estimate of the curvawre effect and to provide a
estimate of pure error. There additionally may be other
estimates of error that are known to estimate ¢°, the
error variance. In this section. we use this additional
information to extend Lenth’s method to make use of
this information.

For the general case, assume we have an
independent estimate of 6°. which we will denote as 5.
Under the usua! normal theory assumptions.

v/ o7~ x(V).

that is s° follows the usual mean square distribution with
v degrees of freedom. If the center point of a fractional
factorial is replicated 5 times, then the mean square for
pure error from that replication provides an independent
estimate of o° with 4 degrees of freedom. The sum-of-
squares is v s° and the degrees of freedom is v = 4.

Now. the variance of an estimated contrast is
a multiple (often fractional multiple) of o°. For
instance, in an 8-run fractional factorial, the variance of
the estimated A-effect (defined as the difference
between the average response at the high level of A and
the average response at the low level of A)is¢* /2. In
a 32-run design, the variance of the estimated A-effect
is 0> / 8, etc. For generality, we assume the common
variance of estimated contrasts is K o°.

To provide a combined contrast standard error.
we pool Lenth’s PSE with the independent estimate K
5° using the usual method,

CPSE={ (dPSE*+ VK s*)/(d+Vv)}""

We then propose using a combined margin of error
defined by

CME = 455, x CPSE.
The combined degrees of freedom is taken to be
df=d+v.

Similarly our proposed combined simultaneous margin
of error is given by

CSME =1, x CPSE.

We propose using CME and CSME in place of ME and
SME, respectively, whenever additional information on
the error variance is available from any source.

3. Example from Montgomery (1997)

As an example, we take data from Example 7-
2 and Problem 7-29 in Montgomery (1997). The data
come from a 4-factor 2-level full factorial that is
unreplicated in Example 7-2 and is augmented by 3
center points in Problem 7-29. For our purposes here.
we will simply call the factors A. B. C. and D. although
for interpretation purposes we ought to understand as
completely as possible the substance of the data. The
2] data points are given in Table 1.



Term Estimated Contrast
A 21.625
AC -18.125
AD 16.6235
D 14.625
C 9.875
ABD 4.125
B 3.125
BCD -2.625
BC 2.375
ABC 1.875
ACD -1.625
ABCD 1.375
CD -1.125
BD -0.375
AB 0.123

Run A B C D y-obs
] - - . ; a5
2 - - . i 71
3 - + - - 48
4 - + - - 65
5 ) . " ; 68
6 - - + - 60
7 ; + + - 80
8 + + + - 65
9 . - - - 43
o+ - - - 100
noo- + . + 45
- + - + 104
13 - - . + 75
14 = - + + 86
5 - + + + 70
6 - + + + 96
17 0 0 0 0 73
18 0 0 0 0 75
19 0 0 0 0 71
20 0 0 0 0. 69
21 0 0 0 0 76

Table 1: Data from Montgomery (1997)

Lenth’s method applies nicely to this example,
as do other methods as this example is as clear cut as it
gets. To illustrate Lenth’s method it is easiest to look
at the effects list, ordered by absolute value. The values
are given in Table 2.

Table 2: Ordered Estimated Contrasts
The calculations for Lenth’s method yield
5o=1.5 % |-2.625 | =3.9375
2.5 x3.9375=9.84375
PSE = 1.5 x | 1.75 [ = 2.625
ME =2.571 x 2,625 = 6.75
SME =35.219 x2.625=13.70

So the first four contrasts in Table 2 would be judged
significant by the SME standard and the fifth contrast C
would be taken under consideration for significance.
(Here C is clearly important as AC is the second most
significant contrast, so it may notbe important to clarify
the significance of the C contrast.)

If we use the additional information from the
replication of the center points, we have 4 degrees of
freedom and s = 8.20. The variance of a contrast for
a 16-run design is ¢° / 4, so the combined pseudo
standard error is



CPSE = { (5  2.625*+4 x 8.20/4)/9 }**=2.177.
the combined margin of error is
CME =2.262 x 2.177 = 4.92.
and the combined simultaneous margin of error is
CSME =3.938 x 2.177 = 8.57.

Using the additional information lowers the two
margins of error considerably. Note that the gain
comes from the relatively smaller estimate of error from
the pure error component and additionally the smaller
¢ multipliers resulting from having 9 degrees of freedom
instead of 5 degrees of freedom. It is interesting in this
case that all the first five contrast are clearly significant
using the CSME criterion. Indeed, there is no
ambiguity as there are no contrast in the zone between
the CME and the CSME. Of course. there well could
be in less clear cut problems.

4. Simulation Results

To understand the gain from using additional
information, we carried out a simulation study
comparing Lenth’s original method to the extended
method. Recent work. Loughin and Noble (1997) for
example, have noted that Lenth’s method fails to
control Type 1 error rates and that simulation may be
used to calibrate the limits for his method. For 7. 13.
and 31 effect designs. we have found adjusted ME and
SME multipliers to use in place of the 1 two-sided 0.95
or simultaneous 0.95 critical values proposed by Lenth.
Table 3 gives the original and adjusted values for
Lenth’s method.

7 15 31
original ME 3.764 2571 2218
adjusted ME 2295 2140 2.082
original SME 9.008 5219 4218
adjusted SME 4891 4.163 4.030

Table 3: Lenth Adjusted Critical Values

An additional simulation was run to illustrate
the gain in power from adding additional information
concerning the size of the error variance. Table 4 gives
a comparison of the power of Lenth’s method (using
adjusted critical values) and our extended method from
Section 2. The data for the simulation were generated

from random normal variates for each contrast with 0.
1. 2. or 3 real effects corresponding to a contrast
standardized expected value of 2.0 standard units with
the remaining contrasts having expected value of 0.0.
Data for the extended method added 5 degrees of
freedom for additional information on the variance o°.

Power Power
ME SME

0/7 Lenth 5.0 5.0
Extended 5.0 5.0

177 Lenth 29.2 7.4
Extended 45.1 19.7

27 Lenth 219 7.8
Extended 36.6 21.2

377 Lenth 13.5 6.6
Extended 29.8 19.4

0/15 Lenth 5.0 5.0
Extended 5.0 5.0

1715 Lenth 41.0 9.8
Extended 47.0 14.6
2/15 Lenth 35.2 11.8
Extended 42.5 18.1
3115 Lenth 30.1 1.2
Extended 38.9 18.9

0/31 Lenth 5.0 5.0
Extended 5.0 5.0

1/31 Lenth 44.1 9.1
Extended 46.7 11.5
/31 Lenth 434 11.8
Extended 459 15.0
3/31 Lenth 40.4 13.4
Extended 442 18.3

Table 4: Power Comparison of Two Methods



5. Augmented Probability Plots

The half-normal and full-normal probability
plots are undoubtedly the most used method of analysis
for 2-level factorial and fractional factorial designs.
We agree that subjective interpretation of these plots,
combined with substantive information, gives the
practitioner the greatest ability to derive information
from studies using these design. One must. however, be
extremely careful as was pointed out by Daniel (1976).
Daniel included in his book pages of NULL probability
plots to illustrate the variety of “interpretable™ plots that
arise when there are, in fact, no real effects.

Figure 1 presents the usual half-normal
probability plot for the data from Montgomery used to
illustrate Lenth's method and the extended method in
Section 3. The usual plot includes only information
from the factoria! points, omitting any information from
the replicated center points.

We propose augmenting the usual half-normal
or full-normal plot by adding a point to the plot for each
degree of freedom of additional information concerning
the error variance. For instance, we add points that
correspond to expected normal order statistics (absolute
values for the half-normal plot) scaled to have the same
standard error as the effect contrasts. We also account
for the ordered position of the additional points among
the estimated contrasts from the factorial points. This
requires an iterative calculation to ensure that the
additional points are not associated with higher
percentiles than they should be. Figure 2 presents the
augmented half-normal plot for the data from
Montgomery used in Section 3. The triangles on the
plot represent the pure error augmented points. Note
that they are intertwined with the “null” estimated
contrast effects on the plot. Note also that they lie on a
straight line with slope directly related to the estimated
contrast standard error as estimated by the “pure error”
information.

To illustrate the possible advantage of the
augmented plot, we created an artificial data set from a
2* factorial with 5 center points. The data are given in
Table 5.

A B C y-obs
- - - -3.3
- - - 9.2
- + - -3.6
+ + - 2.6
- - + -1.4
+ - + 3

- + + -34
+ + + 15.3
0 0 0 -1.1
0 0 0 0.6
0 0 0 0.6
0 0 0 1.3
0 0 0 1.0

Table 5: Artificial Data for Figures 3 & 4

Figure 3 gives the usual 7 point half normal
probability plot. There are 5 large contrasts and 2 small
ones. It is difficult to distinguish this from a null plot
that happened to wind up with 2 small contrasts.
something that can easily happen since the sampling
distribution of absolute estimated half-normal null
contrasts has greatest density at 0.

Figure 4 augments the usual plot with 4 points
for pure error. We are much more comfortable now
moving the line over to go through the 2 “null” contrast
values and the 4 “*pure error” augmented data values.
The additional points clarify the situation for us in this
situation which probably would not be classified as
“effects-sparse.”
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Figure 3
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Figure 4
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6. Summary and Conclusions

In this paper we have presented material that
permits two technigues commonly employed in the
analysis of factorials and fractional factorials to take
advantage of extra information on the size of the error
variance. We have seen that (a properly calibrated)
Lenth’s method can be modified to have increased
power using the additional information. The increase in
power is greatest in small designs. as expected. The
same increase in clarity can be seen in the augmented
probability plots. We believe that these augmented
plots are quite useful in distinguishing null and real
effects. particularly again for small designs and for
designs in which the effect-sparsity assumption may not
be valid.

One final note that. perhaps. should have been
a reminder up front. We have assumed that the extra
variance information is “pure error™ in the sense that it
was generated from actual replicate values. Also, it is
assumed that the error variance is approximately
constant over the design space. If “replicate™ values are
merely replicate measurements and do not represent
“true replication.” then these tools are totally
inappropriate. [t is an important question for a data
analyst to ask: “How did you get these repeat
observations?” The answer frequently makes these
methods invalid. Even so. when we have true
replication. which we submit you always should. these
tools enable the data analyst to make full use of the
data.
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